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ABSTRACT

Reinforcement learning from human feedback (RLHF) has been widely studied,
as a method for leveraging feedback from human evaluators to guide the learning
process. However, existing theoretical analyses typically assume that the human
feedback is generated by the ground-truth reward function. This may not be true in
practice, because the reward functions in human minds for providing feedback are
usually different from the ground-truth reward function, e.g., due to diverse per-
sonal experiences and inherent biases. Such inconsistencies could lead to undesir-
able outcomes when applying existing algorithms, particularly when considering
feedback from heterogeneous agents. Therefore, in this paper, we make the first
effort to investigate a more practical and general setting of RLHF, where feedback
could be generated by multiple agents with reward functions differing from the
ground truth. To address this challenge, we develop a new algorithm with novel
ideas for handling inconsistent multi-agent feedback, including a Steiner-Point-
based confidence set to exploit the benefits of multi-agent feedback and a new
weighted importance sampling method to manage complexity issues arising from
inconsistency. Our theoretical analysis develops new methods to demonstrate the
optimality of our algorithm. This result is the first of its kind to demonstrate the
fundamental impact and potential of inconsistent multi-agent feedback in RLHF.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Casper et al., 2023) has been widely studied
as a significant advancement in the field of reinforcement learning, where a learner interacts with the
environment sequentially to achieve high cumulative reward. Traditional RL (Sutton, 2018; Agarwal
et al., 2019; Vamvoudakis et al., 2021) relies on absolute reward values generated by predefined
reward functions to guide the learner’s behavior. This limits its applicability in complex real-world
scenarios, where crafting reward functions is challenging or ambiguous, e.g., in robotics (Jain et al.,
2013), large language models (Ouyang et al., 2022), and image generation (Lee et al., 2023).

RLHF addresses this limitation by leveraging feedback from human evaluators to guide the learning
process. Various forms of human feedback have been studied. For example, existing works study
RL from comparison/ranking feedback or preference-based feedback, which involves (i) presenting
a human with two or multiple outcomes, (ii) allowing her to choose the preferred one, and (iii)
guiding the learning process towards better policies based on the received human feedback (Wang
et al., 2023; Zhu et al., 2023; Chakraborty et al., 2024; Ye et al., 2024; Chen et al., 2022; Chatterji
et al., 2021; Kaufmann et al., 2023; Li et al., 2023; Du et al., 2024). In this way, RLHF bridges the
gap between pure algorithmic optimization and the nuanced understanding of human judgment.

However, existing theoretical results on RLHF typically rely on the human feedback generated by the
ground-truth reward function R∗(·). For example, the commonly used comparison model assumes
that: the human feedback is generated according to a Bernoulli distribution based on the value
of a link function σ(R∗(τ1) − R∗(τ0)), where R∗(·) is assumed to be the ground-truth reward
function and {τi}i=0,1 are two outcomes. If the Bradley-Terry-Luce model (Bradley & Terry, 1952)
is considered for the link function σ(·), then the human feedback is τ1 ≻ τ0 (i.e., outcome τ1 is
preferred to outcome τ0) with probability equal to exp (R∗(τ1))/ [exp (R

∗(τ1)) + exp (R∗(τ0))].
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In a word, this type of human feedback is generated by the ground-truth reward function R∗(·). Due
to page limits, we defer further discussion of related work to Appendix A.

Inconsistency in the Feedback: Feedback may not be consistent in practice, due to subjective
human judgment, inherent biases, and varying expertise levels (Tjuatja et al., 2024; Yan et al., 2024).
That is, human feedback in practice often suffers from inconsistency (see the details in Sec. 2.2).
For example, instead of being generated byR∗(·), the real-world human feedback is often generated
based on σ(Rhuman(τ1) − Rhuman(τ0)). Here, Rhuman(·) is the reward function in the human mind,
and it is often different from the ground-truth reward function, i.e., Rhuman(·) ̸= R∗(·). Traditional
RLHF theories, which often assume a ground-truth reward function R∗(·), may not be applicable in
this more uncertain setting. Particularly, if assuming Rhuman(·) = R∗(·), the resulting policy could
overfit to certain subjective signals rather than generalizing effectively. Therefore, in this paper, we
address these unique challenges posed by inconsistent human feedback in the algorithm design and
theoretical analysis, and investigate the fundamental impact of this type of inconsistency in RLHF.

Multi-Agent Feedback: Existing theoretical analysis in RLHF leaves untapped potential for richer
and more diverse feedback sources. That is, in addition to human evaluators, feedback can be
sourced from AI models, data analyzers, and other automated tools (Lee et al., 2024; Guo et al.,
2024a). (We call these sources “agents”.) Heterogeneity among agents in understanding and inter-
pretation could create a wide spectrum of feedback quality, because of diverse personal experience
and varying expertise levels. Therefore, we investigate the power of feedback from multiple agents.

Due to multi-agent feedback, the inconsistency issue becomes even more pronounced. On the one
hand, discrepancies among agents complicate the learning process, as the policy must navigate and
reconcile conflicting signals. This requires us to explore strategies for harmonizing diverse inputs to
align more closely with ground-truth objectives. On the other hand, we should intuitively be able to
leverage multiple data streams of agent feedback simultaneously, such that individual biases can be
reduced. To address these challenges, in this work, we investigate the following open problem:

Whether multi-agent feedback with inconsistency in RLHF fundamentally helps the learning
process or exacerbates the situation?

To answer this, we theoretically characterize the fundamental impact and potential of inconsistent
multi-agent feedback. Specifically, we study online RLHF with inconsistent multi-agent feedback
under general function approximation. In addition to the well-known difficulties in RLHF and in an-
alyzing under general function approximation, the aforementioned properties of inconsistent multi-
agent feedback introduce significant new challenges in both algorithm design and regret analysis.

Sharp Regret Under Inconsistency: We formulate the inconsistency in the multi-agent feedback by
the cumulative discrepancy between the human preference model and the ground-truth preference
model (see Eq. (2)). Eq. (2) is general and does not require special structures in the inconsistency.
Nonetheless, we are able to provide sharp theoretical guarantees. Note that the regret considered
in Eq. (3) is essentially the worst-case pseudo-regret, but over all possible human reward functions
satisfying the inconsistency model. As a result, our theoretical regret guarantee not only works for
the agents providing feedback during the online learning process, but also works for any newly-
incoming inconsistent agent, as long as her reward function satisfies the inconsistency model.

New Algorithm Design and Analytical Ideas: From a high-level point of view, the steps of our new
algorithm include: (i) dynamically searching for the confidence center based on the multi-agent
feedback; (ii) constructing a confidence set based on step i and an important subset of inconsistent
feedback; (iii) reforming the confidence set in step ii to capture ground-truth comparison with high
probability; and (iv) constructing a high confidence policy set to circumvent the absolute reward
uncertainty. In this way, the optimal policy can be approximately found with high probability. The
new ideas that have been developed are described below.

New Idea I: Steiner-Point-Based Confidence Center for Leveraging Multi-Agent Feedback.
Since the feedback is inconsistent, a natural idea would be to use the feedback of each agent to
estimate their reward models, and then search for the optimal policy jointly. However, this will
lose the fundamental power of multi-feedback, i.e., the resulting performance does not improve
with the number of agents. Thus, we should estimate the confidence center by utilizing multi-
feedback simultaneously. However, the traditional complexity analysis in RL does not apply, since
the confidence center may be outside of the agent reward function space and arbitrarily dynamic

2
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(b) RLHF with Multi-Agent Feedback (Our Case)

Figure 1: Feedback comparison for tradition RLHF case and our case: in our case, the feedback is
based on heterogeneous reward functions Rm

h , which could be different from the ground truth R∗
h

due to inconsistency (see Fig. 1 and Fig. 2). To address this new difficulty, we non-trivially modify
Steiner-Point Approximation from theoretical physics and combinatorial geometry (Brazil et al.,
2014), which requires fundamentally new analytical methods in RL for a sub-linear regret.

New Idea II: Sub-Importance Sampling for Reducing Functional Complexity. Due to the nature
of multi-agent feedback and general function approximation, the traditional sample-based complex-
ity would result in a final regret increasing linearly in time horizonK. To address this new difficulty,
we design a parameterized approximation method for sub-importance sampling under Fermat analy-
sis, such that the functional complexity is reduced as it is based on only a subset of sensitive samples,
where the new layer of complexity can be fundamentally reduced and captured in the analysis.

New Idea III: Scaled Confidence-Based Weights for Reducing Biases and Optimism-in-the-
Face-of-Policy-Uncertainty (OFPU). Existing ideas for addressing biases in the sampling feedback
are to add weights to the action selection step. Directly applying this does not work due to the het-
erogeneous feedback in our case. To resolve this, we design a fundamentally different scaled weight
directly on the policy, such that a greedy decision under policy uncertainty in our case still guaran-
tees optimality. Particularly, due to the inconsistent discrepancy, the estimated reward function will
always contain a layer of inconsistency. Thus, a V -value function is not well-defined. Instead, we
construct the policy set directly based on the new bonus terms, i.e., in the face of policy uncertainty.

2 PROBLEM FORMULATION

In this section, we introduce the online RLHF setting that we study, especially the inconsistent multi-
agent feedback considered in this paper, as well as notions for general function approximation.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

We investigate RLHF in episodic Markov decision processes (MDPs), where an online learner inter-
acts with the environment in K episodes. It is typically modelled by (H,S,A,P), where H denotes
the number of steps in each episode; S and A denote the state space and action space, respectively;
and P : S× S× A→ [0, 1] denotes the unknown transition kernel.1 At each step h of an episode k,
based on the current state sk,h, the online learner takes an action ak,h. Then, the environment transits
to the next state sk,h+1, which is drawn according to the transition probability P(·|sk,h, ak,h).

1As typically assumed, we let the initial state in each episode be fixed, i.e., sk,1 = s1 ∈ S. This can be
generalized to the case where sk,1 is sampled from a fixed distribution ∆1 for each episode k.
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In RLHF, human feedback is typically used to guide the learning process. One conventional human
feedback in each episode is a comparison of two trajectories τk ≜ (sk,1, ak,1, . . . , sk,H , ak,H) and
τ0 ≜ (s0,1, a0,1, . . . , s0,H , a0,H) (Wang et al., 2023; Zhu et al., 2023; Du et al., 2024; Zhan et al.,
2024). In this case, the feedback is fk = 1, i.e., trajectory τk is preferred to trajectory τ0 (denoted by
τk ≻ τ0), with probability σ (R∗(τk)−R∗(τ0)), where R∗(·) is an unknown ground-truth reward
function and σ(·) is a link function. Note that this human feedback fk is generated by a comparison
based on the ground-truth reward function R∗(·). This may not be true in practice, due to subjective
human judgment, varying expertise levels, diverse personal experience, inherent biases, etc.

2.2 INCONSISTENT MULTI-AGENT FEEDBACK

Therefore, in this paper, we extend aforementioned traditional RLHF to a more practical and general
online setting, i.e., RLHF with inconsistent multi-agent feedback, formalized as follows.

Multi-Agent Feedback: We consider feedback that could be generated by multiple agents, e.g., hu-
mans (Chakraborty et al., 2024), AI models (Lee et al., 2024), and data analyzers (Guo et al., 2024a).
Specifically, at the end of each episode k, there are M agents providing comparison feedback fmk ,
where m = 1, . . . ,M is the index of the agent. This type of multi-agent feedback has received
attention in empirical studies recently. However, to our knowledge, a theoretical understanding of
the fundamental impact of (inconsistent) multi-agent feedback is still an open problem.

Inconsistency in the feedback: We consider the human feedback that could include inconsistency,
i.e., the human feedback is not generated based on the ground-truth reward function R∗(·). Specifi-
cally, the feedback fmk from each agent m is a Bernoulli random variable with probability2

P (fmk = 1) ≜ Pm (τk ≻ τ0) = σ (Rm(τk)−Rm(τ0)) , (1)

where Rm(·) : {τ} → [0, 1] is the unknown reward function of agent m, {τ} is the state-action
trajectory space with slight abuse of notation, τ0 ≜ (s0,1, a0,1, . . . , s0,H , a0,H) is a fixed trajectory
of state-action pairs, and τk is the trajectory visited in episode k. We highlight two layers of incon-
sistency here: (i) the reward function Rm(·) in the mind of each agent m could be different from
that in the mind of others, and (ii) {Rm(·)}Mm=1 could be different from the ground-truth reward
functionR∗(·). This is why we call the multi-agent feedback “inconsistent”. More specifically, such
inconsistency among Rm’s and R∗ can be formulated by the following inconsistency model:

max(τk)Kk=1,τ0

∑K
k=1 |σ (R∗(τk)−R∗(τ0))− σ (Rm(τk)−Rm(τ0))| ≤ ξ,∀m ∈ [M ]. (2)

Note that the inconsistency model in Eq. (2) is general. It only assumes an upper bound on the
cumulative worst-case discrepancy between comparisons (i.e., not the absolute values) based on
the reward function Rm(·) of each agent and the ground-truth reward function R∗(·). Thus, the
discrepancy of each agent could be different, and hence Rm(·) could be different from each other.
Moreover, Eq. (2) does not require special structures in the inconsistency. Further, if ξ = 0, our
setting reduces to the setting without inconsistency, where all agents provide feedback based on the
ground-truth reward function. In addition, if ξ = 0 and M = 1, our setting reduces to the traditional
setting, where one human provides feedback generated by the ground-truth function.

Example 1 (Inconsistent multi-agent feedback in autonomous driving): When evaluating which
maneuver or course is the best during the training of a vehicle, different agents may prioritize dif-
ferent aspects based on her subjective habits, such as safety, timeliness, fuel efficiency, and comfort.
This leads to inconsistent opinions on the best course of actions and locations. For instance, assum-
ing course τ1 is safer and more comfortable, while course τ0 is faster and more direct. Consider
the case of two agents. Agent m = 1 might emphasize safety and comfort above all. Thus,
she chooses a slower, but more cautious and comfort course (which turns out to be bad), e.g.,
R1(τ1) − R1(τ0) = 0.8. Agent m = 2 may prioritize timely arrival. Thus she chooses a faster
and more direct path, even if it involves greater risk, e.g., R2(τ1)− R2(τ0) = −0.2. However, due
to more complicated considerations, such as minimizing traffic disruptions or environmental impact,
the ground-truth reward function may suggest that R∗(τ1)− R∗(τ0) = 0.4. Such inconsistency in-
troduces variability in the data, which significantly challenges the RL process.

2With simple modification, our results can be applied to other settings, e.g., the comparison is based on each
state-action pair, preference-based model, and ranking feedback.
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2.3 PERFORMANCE METRIC - REGRET UNDER INCONSISTENCY

We evaluate the performance of the online RLHF algorithm by the regret under inconsistency, i.e.,

Reg(K) = maxEq. (2)
∑K

k=1 [V
∗(τ0)− V πk(τ0)] , (3)

where V ∗(τ0) = maxπ E [σ(R∗(τπ)−R∗(τ0))] is the optimal V -value, V πk(τ0) =
E[σ(R∗(τπk) − R∗(τ0))], and τπ denotes the trajectory after implementing policy π. Note that
(i) The regret in Eq. (3) is under the worst-case inconsistent feedback satisfying Eq. (2), i.e., the
“max” part in Eq. (3). As a result, our solution works not only for the M agents providing feedback
for the online learning process, but also for any newly-coming agent, as long as the reward function
R(·) in her mind satisfies Eq. (2). (ii) V -value in Eq. (3) is based on the comparison, since we could
only learn the reward up to a constant, due to the fact that the agent feedback is only a comparison.
(iii) If the regret in Eq. (3) is evaluated based on the unknown Rm(·), our results still hold, with
only a constant factor difference. (iii) Achieving a low regret under such inconsistency in RLHF
requires novel ideas in both the algorithm design and regret analysis. To the best of our knowledge,
we are the first to study such fundamental impact and potential of inconsistent multi-agent feedback
in RLHF from a theoretical perspective.

2.4 GENERAL FUNCTION APPROXIMATION

We consider general function approximation. Below, we provide the definitions of the standard
covering number and eluder dimension for capturing the complexity of a function space.
Definition 1. (ϵ-covering number) Let (F , ∥·∥) be a metric space, whereF is the function class and
∥ · ∥ is the norm used to measure distances between functions. A set of functions {f1, . . . , fN} ⊂ F
is called an ϵ-covering set if for every f ∈ F , there exists some fn, s.t., the distance ∥f − fn∥ ≤ ϵ.
The ϵ-covering number N (F , ∥ · ∥, ϵ) is the minimum number N of functions in an ϵ-covering set.

The ϵ-covering number N (F , ∥ · ∥, ϵ) captures how “complex” the function class F is, i.e., how
many different functions are required to approximate any function in the class to within ϵ accuracy.
Definition 2. (Eluder dimension) Let F be a class of real-valued functions over a domain X . For a
set of previously observed points XN = {x1, x2, . . . , xN} ⊂ X , define the following:

- A point x ∈ X is said to be ϵ-dependent ofXN with respect to the function classF if, for all pairs of

functions f1, f2 ∈ F satisfying
√∑N

n=1 (f1 (xn)− f2 (xn))
2 ≤ ϵ, it holds that |f1(x)− f2(x)| ≤

ϵ. Further, x is ϵ-independent of XN with respect to F if x is not ϵ-dependent on XN .

- The eluder dimension dimE(F , ϵ) is the largest number of points in set XN such that, for some
ϵ′ ≥ ϵ, each point xn (n ∈ [N ]) is ϵ-independent of its previous points {x1, x2, . . . , xn−1}.

The ϵ-dependency shows that the new point x cannot be used to significantly distinguish between
functions inF that agree on the previous data points. The eluder dimension measures how dependent
or entangled the predictions of different functions in F are across the state or state-action space.

3 ALGORITHM DESIGN

In this section, we present our new RLHF algorithm for solving the problem defined in Sec. 2. We
focus on introducing the three main new ideas for addressing inconsistent multi-agent feedback.

3.1 RLHF WITH INCONSISTENT MULTI-AGENT FEEDBACK

The algorithm is formally provided in Algorithm 1. From a high level perspective, in each episode,
our algorithm first executes a sub-importance sampling to guarantee the functional complexity not
increase linearly with the time horizon (line 3). Next, by applying a Steiner point method, we
construct the confidence center that could be outside of the reward space (see Fig. 1 and line 4) and
the corresponding confidence set for the reward functions (line 5). Then, based on the trajectories
sampled under the Steiner point method, we reform the confidence center and confidence set for the
transition kernel (line 7 and line 8). Finally, based on the bonus terms for both reward and transition,
we update the policy greedily in each episode (line 10). Below, we focus on introducing these
four main new ideas in our algorithm design to enable online RLHF with inconsistent multi-agent
feedback. Define Γk ≜ {τt}t∈[k] and σ(τ | R) ≜ σ(R(τ)−R(τ0)).

5
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Algorithm 1 RLHF with Inconsistent Multi-Agent Feedback (RLHF-IMAF)

1: Initialization: Set βT = βP = 8 log (2KN (FT, 1/K, ∥ · ∥∞) /δ)
2: for episode k = 1 : K do
3: ▷ ▷ ▷ New Idea II:
4: Add 1/pτ copies of each trajectory τ ∈ Γk−1 into Γ′

k−1 with probability pτ , where pτ =

min
{
p ∈ R | p ≥ min

{
1, TΓ,R,λ(τ) · 72 ln(4N (R, ε/72 ·

√
λδ/(|Γ|))/δ)/ε2

}
, 1/p ∈ Z

}
5: ▷ ▷ ▷ New Ideas I and II:
6: Update the Steiner-point-based reward confidence center R̂k according to Eq. (8)
7: Update the confidence setRk for the reward function according to Eq. (12)
8: Update the bonus term for the reward function exploration as follows,

bRk (τ) = max
R∈Rk

∣∣∣σ (τ | R)− σ
(
τ | R̂k

)∣∣∣ /√λ+
∑

t∈[k−1],
τ∈Γt|t−1

(σ(τ |R)−σ(τ |R̂k))
2

max{1,Λt(θ)/|σ(τ |R)−σ(τ |R̂t)|} , (4)

9: ▷ ▷ ▷ New Ideas I and III:
10: Update the Steiner-point-based transition confidence center according to Eq. (14)
11: Update the confidence set for the transition kernel according to Eq. (15)
12: Update the bonus term for the transition kernel exploration as follows,

bPk (τ) =
∑

(s,a)∈τ

max
V ∈V
P ′∈Pk

(
P ′(· | s, a)− P̂k(· | s, a)

)
V (s, a)(

λ+
∑

t∈[k−1],
τ∈Γt|t−1

⟨[P ′−P̂k](·|st,h,at,h),Vt,h⟩2
max{1,ΛP

t (θ)/|⟨[P ′−P̂t](·|st,h,at,h),Vt,h⟩|}

)1/2
. (5)

13: ▷ ▷ ▷ New Idea III:
14: Execute the following policy for episode k according to Eq. (18)
15: Collect the trajectory τk and preference fmk from all agents.
16: end for

As discussed in the introduction, since it is highly unclear whether multi-agent feedback with in-
consistency fundamentally helps the learning or exacerbates the situation, the difficulty is how to
leverage the potential and circumvent the biased in such feedback.

New Idea I: Steiner-Point-Based Confidence Center for Leveraging Multi-Agent Feedback (Il-
lustrated in Fig. 2b). Applying existing ideas for function estimation does not work in our case,
due to the inconsistency and heterogeneity in the feedback. This undertanding is fundamentally im-
portant for the later algorithm design and theoretical analysis, thus let us elaborate more as follows.

Specifically, to estimate the reward function, a natural but naı̈ve way would be to apply the least-
squares method to the feedback from each agent, i.e.,

R̂m
k = argminR′∈R

∑k−1
t=1 (σ (R′(τt)−R′(τ0))− fmt )

2
, (6)

where R̂m
k denotes the estimated reward function of agent m and R denotes the agent re-

ward function space. Note that this does not utilize the mutual information I (fmi ; fmj ) =
DKL

(
P(fmi ,fmj )∥Pfmi ⊗ Pfmj

)
among the agents, and thus the resulting regret would not improve

when more agents are providing feedback. For example, in Fig. 1, the useful overlaps between
feedback generated based on different Rm

h ’s are not effectively utilized.

To address this, intuitively, if the reward functions in all human minds were identical, we
could consider them jointly. Then, according to the chain rule of mutual information, i.e.,
I (fm1 , . . . , fmi−1 ; fmi) =

∑i−1
j=1 I (f

mj ; fmi |fm1 , . . . , fmj−1), by considering the estimate

R̂′
k = argminR′∈R

∑k−1
t=1

∑M
m=1 (σ (R

′(τt)−R′(τ0))− fmt )
2
, (7)

the performance would improve with the number of agentsM . Compared to the estimate R̂m
k above,

the difference here is to consider the feedback from allM agents jointly, i.e., shown by the sum over
all m and the estimate R̂′

k is no longer indexed by (or designed for) each agent m separately.

6
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Figure 2: Illustration of new ideas in our algorithm design

However, the estimate R̂′
k still does not work, because the reward functions of the agents are actually

not identical due to the inconsistency in the feedback (see Eq. (2)). Then, one may conclude that
when there exists such inconsistency, multi-agent feedback does not help any more. For example, if
the agents are highly biased and do not agree with each other, multiple copies of feedback from these
agents do not tell us anything about the ground truth. Thus, an open fundamental question remains:
whether multi-agent feedback with inconsistency actually helps or exacerbates the situation?

With a deeper thought experiment, we could notice that, since KL divergenceDKL (Pi(f)∥Pj(f)) =∑
f Pi(f) log

Pi(f)
Pj(f)

is convex in the pair (Pi, Pj), by carefully constructing the confidence center
based on the multi-agent feedback, we could still push the estimation of the reward function closer
to the ground truth. Then, the non-trivial question is where such a confidence center is.

Motivated by theoretical physics and combinatorial geometry, we provide a novel idea to answer this
question based on the Steiner point (Gilbert & Pollak, 1968; Brazil et al., 2014). Specifically, the
Steiner point is a generalization of the Fermat–Torricelli point. From a geometrical point of view,
it is defined to be a point with the minimum total distance to all input points. The effectiveness of
Steiner point comes from the fact that it could be a new point added to solve a problem, i.e., the
solution set could be expanded from the original constrained set based on inputs to a larger set with
more flexibility. In our case, when restricting ourselves to the ill-structured agent reward function
space, the solution may get stuck due to the inconsistency. After enlarging the space, we could
leverage the convexity of KL divergence mentioned above, and hence get closer to the ground truth.

However, the difficulty in applying Steiner point to our problem is that the optimization, i.e., the
estimation, for the reward function is based on the randomness of the sampled data, and thus the data
covering complexity would be exponential. Despite the worse-case complexity, a polynomial-sized
approximate kernelization scheme is still possible. For example, for any α > 0, the connected vertex
covering algorithm achieves a polynomial-sized kernel with only a α estimation error (Lokshtanov
et al., 2017). Therefore, to leverage the potential of multi-agent feedback under inconsistency, we
use the heterogeneous feedback joint in an expanded reward function space as follow (Fig. 2b):

R̂k = argmin R′∈Rk−1∩
{R′|minR∈R ∥R′−R∥RTV≤α}

∑M
m=1

∑k−1
t=1

∑
τ∈Γ̂t|t−1

(σ(τ |R′)−fm
t )

2

max{1,Λt(θ)/|σ(τ |R)−σ(τ |R̂t)|} ,

(8)

where the objective function is the Steiner point target function with domain in the expanded space
R̄α ≜ {R′ | minR∈R ∥R′ −R∥RTV ≤ α}, the reward total variance (RTV, with a slight abuse of
notation) is defined to be ∥ · ∥RTV ≜ max(τk)Kk=1,τ0

∑K
k=1 ||R′(τk)−R′(τ0)| − |R(τk)−R(τ0)||,

Rk is defined in Eq. (12), ΛR
t (θ) ≜ θ

√
λ+

∑t−1
i=1

∑
τ∈Γ̂i|i−1

(
σ(τ | R)− σ(τ | R̂i)

)2
, and

Γ̂t|t−1 ≜ Γ̂t − Γ̂t−1. Note that there is a trade-off related to the tunable parameter α, e.g., with
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a larger α, the optimal solution is getting closer to the ground-truth, while the kernel size will be
larger, and vice versa.

New Idea II: Sub-Importance Sampling for Reducing Functional Complexity (Illustrated
in Fig. 2a). Conventionally, in each episode k, based on our new Idea I and the replay buffer
{(τt, fmt )}(t,m)∈[k−1]×[M ] that contains all historical data, we can construct the confidence set,

R′
k =

{
R′ ∈ R̄α ∩Rk−1 |

∑k−1
t=1

(
σ (R′(τt)−R′(τ0))− σ

(
R̂k(τt)− R̂k(τ0)

))2
≤ βR

}
,

(9)

such that the ground-truth reward function R∗(·) is contained with high probability, by choosing the
parameter βR correctly. After collecting more and more sampling data by repeating this procedure
along allK episodes, the confidence set will be pushed to navigate the ground truthR∗(·), according
to the law of large numbers. As a result, a greedy policy based on the Q̂-value function constructed
on the reward function in the confidence set will be nearly optimal. To encourage such greedy
exploration, a bonus term bk,h is usually designed to be the width of the confidence set R′

k, i.e.,
bk,h = w (R′

k) ≜ maxR1,R2∈Rk
|σ (R1(τ))− σ (R2(τ))|, such that Q̂k,h+1(s, a) is guaranteed to

be an overestimate of the true Q value r(·, ·) +
∑

s′∈S P (s′ | ·, ·)Vk,h+1 (s
′) with high probability,

where the V -value function is Vk,h+1(·) = maxa∈AQk,h+1(·, a).
However, in doing so in our case, two new issues will arise. First, since the confidence setRk above
relies on all historical data, i.e., represented by the sum over all episodes 1, . . . , k − 1, the bonus
term bk,h will also rely on all these data. Then, the complexity could increase linearly with time
horizon T = KH . One idea to address this is importance sampling, i.e., only include important
state-action pairs in the estimation (Langberg & Schulman, 2010; Wang et al., 2020). However, the
Steiner-point-based confidence center in Eq. (8) relies onRk−1, and hence will be affected by such
sampling. To resolve this new issue, we develop a novel “sub-importance sampling”, with the new
development mainly on how to determine the importance of the historical data.

Specifically, we first introduce an important notion in such sampling. For a given set of trajectories
Γ ⊆ {τ} and a function classR, for each τ ∈ Γ, the λ-sensitivity of τ with respect to Γ andR is

TΓ,R,λ(τ) ≜ maxR,R′∈R,
∑

τ∈Γ(R(τ)−R′(τ))2≥λ/(1+α) (R(τ)−R′(τ))
2
/
∑

τ ′∈Γ (R(τ
′)−R′(τ ′))

2
.

(10)

Sensitivity measures the importance of each trajectory τ in Γ with respect to the function pairs
R,R′ ∈ R, such that τ contributes the most to

∑
τ ′∈Γ (R(τ

′)−R′(τ ′))
2. Thus, the trade-off is

that, intuitively with larger α, Steiner-point-based confidence center is better constructed, but the
bonus complexity will be larger. To handle this new trade-off, we filter the historical samples, i.e.,

Γ̂k = {τ ∈ Γk | τ ∈ C(Θ, 1/(8
√
4T/δ)), supR,R′∈R̄∩Rk−1

|R(τ)−R′(τ)| ≤ 1/(8
√

4T/δ)},
(11)

where R̄k = {R ∈ C(R̄ ∩ Rk−1, 1/(8
√

4T/δ)) | ∥R̄k − R̂k∥ ≤ 1/(8
√
4T/δ)} is a confidence-

center-based shifted covering set. In this way, we only consider the samples from a set guaranteeing
sufficient covers (Fig. 2a). Based on this and the constructed confidence center, the confidence set is

Rk =

{
R′ ∈ R̄α ∩Rk−1 | λ+

∑k−1
t=1

∑
τ∈Γ̂t|t−1

(σ(τ |R′)−σ(τ |R̂k))
2

max{1,Λt(θ)/|σ(τ |R′)−σ(τ |R̂t)|} ≤ β
R

}
. (12)

Second, constructing Rk in Idea II requires the reward function of each state-action pair, such that
the value function at each step h can be calculated. Such a reward value is not available in RLHF
settings. Tackling this problem is relatively easier (Ayoub et al., 2020; Ye et al., 2023). We define the
loss function as Lk (P1,P2) =

∑k−1
t=1

∑H
h=1 (⟨P1 (· | st,h, at,h)− P2 (· | st,h, at,h) , Vt,h⟩)2. Next,

we construct the high confidence set for transition P:

BPk =
{
P′ | Lk

(
P′, P̂k

)
≤ βP

}
. (13)

The exploration bonus bPk(s, a, V ) for the transition estimation then measures the uncertainty of BPk ,
i.e., bPk(s, a, V ) = maxP1,P2∈BP

k
(P1 − P2)V (s, a). Suppose Vmax,k,s,a = argmaxV ∈V b

P
k(s, a, V ),

8
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then we use Vmax,t,st,h,i,at,h,i
as the online target for the history sample (st,h, at,h, st,h+1). With a

slight abuse of notation, we use bPk(s, a) = maxV ∈V b
P
k(s, a, V ) to denote the maximum uncertainty

for a given state-action pair (s, a). Define the bonus term bPk(τ) =
∑

(s,a)∈τ bP,k(s, a).

New Idea III: Scaled Confidence-Based Weights for Reducing Biases and Optimism-in-the-
Face-of-Policy-Uncertainty (Illustrated in Fig. 2c). Based on Idea I and Idea II, we are ready to
construct optimistic Q̂-value function. However, when the ground-truth reward function is not in
the candidate set, an additional non-negligible regret will be incurred, e.g., simply applying online
ridge regression over all collected samples could result in a regret that grows linearly in a constant
error times O(

√
T ) (He et al., 2022). One existing solution is to assign a weight wk to each selected

action. The key idea is to assign a small weight to it to avoid the potentially large sub-regret, e.g.,

P̂k = argminP ′∈Pk−1

∑k−1
t=1

∑
τ∈Γ̂t|t−1,

h∈[H]

(⟨P ′(·|st,h,at,h),Vt,h⟩−Vk,h(st,h+1))
2

max{1,ΛP
t (θ)/|⟨P ′(·|st,h,at,h)−P̂t(·|st,h,at,h),Vt,h⟩|} , (14)

where ΛP
t (θ) ≜ θ

√
λ+

∑t−1
i=1

∑
τ∈Γi|i−1

(〈
P ′ (· | si,h, ai,h)− P̂i (· | si,h, ai,h) , Vi,h

〉)2
is the

weight to normalize the traditional regression error for stability. Then, the confidence set will be

Pk = {P ′ ∈ Pk−1 | λ+
∑

t∈[k−1]

∑
τ∈Γt|t−1,

h∈[H]

(⟨P ′(·|st,h,at,h)−P̂k(·|st,h,at,h),Vt,h⟩)2
max{1,ΛP

t (θ)/|⟨[P ′−P̂t](·|st,h,at,h),Vt,h⟩|} ≤ β
P }. (15)

However, this idea is not directly applicable in our case with inconsistent multi-agent feedback,
because simply adding weights to the action does not help to explore the ground truth that is an
outlier. To address this new issue, we choose the weight as a scaled inverse exploration confidence,

wk = max

{
1, θ

√
λ+

∑k−1
t=1

(
R(τt)− R̂k(τt)

)2
/
∣∣∣R(τk)− R̂k(τk)

∣∣∣} , (16)

where θ > 0 is a tunable parameter. Moreover, since the absolute reward for each state-action pair
is not available in RLHF, we cannot get an optimistic Q̂-value function. Instead, we construct the
optimistic policy set. With the confidence set and bonus terms, we construct the following set Sk:

Sk =
{
π | Eτ∼(P̂k,π)

[
σ
(
τ, τ0 | R̂k

)
+ bRk (τ, τ0) + bPk(τ)

]
≥ 0,∀π0 ∈ Π

}
, (17)

where Π is a set containing all history-dependent policies. Intuitively, Sk consists of policies such
that no other policy outperforms it. Finally, we choose a policy that maximizes uncertainty,

πk = argmax{
π|Eτ∼(P̂k,π)[σ(τ |R̂k)+bRk (τ)+bPk (τ)]≥0

}Eτ∼(P̂k,π)

(√
βRbRk (τ) +

√
βP bPk (τ)

)
. (18)

4 THEORETICAL ANALYSIS

In this section, we focus on discussing about new difficulties in the regret analysis of our setting
with inconsistent multi-agent feedback. Due to page limits, please see Appendix B for details.
Theorem 1. Let α ∈ (0, ξ), C1(k, ξ) = 2

(
ξ2 + 2k + 3 ln(2/δ)

)
, βR

k ≥

Õ

((
ln (HNK(ϵ, α)/δ) + ξ supt<k β

R
t +

(
supt β

R
t

)2
K + supt β

R
t

√
KC1(k, ξ)

)1/2)
, and

βP
k ≥ Õ

(
ln (HNK(ϵ, α)/δ) + ξ supt<k β

R
t +

(
supt β

R
t

)2
K + supt β

R
t

√
KC1(k, ξ)

)1/2
for all

k ∈ [K], then with probability 1− 2δ, the regret of RLHF-IMAF is upper-bounded as follows,

RegRLHF-IMAF(K) ≤ Õ

(√
HK

M
ln (NK(ϵ, α)) dimE(R, ϵ/K) + ξ (dimE(R, ϵ/K))

)
. (19)

Our regret analysis reveals the following: (i) The regret decreases with M , indicating that having
more feedback sources is generally beneficial, even in the presence of inconsistency. This highlights
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the utility of multi-agent feedback in improving performance. (ii) However, the regret also includes
a term dependent on ξ that does not decrease with M . This indicates that while increasing M can
mitigate some effects of inconsistency, if the feedback quality is consistently poor (i.e., high ξ), part
of the overall regret remains significant regardless of M . Thus, the benefit of additional feedback is
limited by its quality. (iii) The regret depends on α, i.e., the Steiner point constant. Thus, there is a
fundamental trade-off between complexity and the regret performance.

Proof Sketch: Due to the three new ideas in our algorithm design, there are three main steps.

First, we need to show the impact of inconsistency resolved by constructing a Steiner-point-based
confidence center. Specifically, the bonus parameter βR

k depends on NK(ϵ, α) ≜ N (R, ϵ, ∥ · ∥∞) ·
N (Sα ×Aα, ϵ, ∥ · ∥∞), which captures the covering over the new function space with regard to the
α-Steiner points. Thus, with high probability at least 1− δ, where δ ∈ (0, 1), we have R∗(·) ∈ Rk.
Note that Sα and Aα represents the Steiner-point-based state space and action space, respectively,
and they are constructed based on the aforementioned construction for the Steiner-point-based con-
fidence set, as well as the transition kernel. See Appendix B.1 for details.

Second, we need to derive the sub-regret based on the gap incurred by sub-importance sampling and
the resulting bonus terms. To capture this, we extend the idea in Wang et al. (2020) (see discussions
in Appendix D) to capture our new sub-importance sampling method, i.e., we show that −ξk ≤
Vk,1(τ0 | P ) − Vk,1(τ0 | P ∗) ≤ 2

√
βP bPk (s, a) + ξk. This captures the gap due to the error in

sub-importance sampling for the comparison feedback. See Appendix B.2 for details.

Third, since we design scaled confidence-based weights for reducing biased in each agent feedback,
we need to derive the final regret based on a deforming indicator function and the threshold-based
bonus values (see discussions in Appendix E). Specifically, we decompose the regret as follows,
(σ(τ | R) ≜ σ(R(τ)−R(τ0)) with slight abuse of notation)

RegRLHF-IMAF(K) =

K∑
k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)− Eτk∼(P̂k,πk)σ (τk | R)
)

+
∑K

k=1

(
Eτ∗∼(P∗,π∗)σ (τ

∗ | R∗)− Eτk∼(P∗,πk)σ (τk | R∗)
)

−
∑K

k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗)− Eτk∼(P̂k,πk)σ (τk | R
∗)
)

+
∑K

k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗)− Eτk∼(P̂k,πk)σ (τk | R
∗)
)

−
∑K

k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)− Eτk∼(P̂k,πk)σ (τk | R)
)
. (20)

Then, we bound the first term, second and third terms, fourth and fifth terms on the right-hand side
one-by-one. The first term captures the gap due to the Steiner point in estimating the confidence
center. The second and third terms capture the gap due to scaled confidence-based weights for
optimistic exploration. The fourth and fifth terms capture the gap due to sub-importance sampling
of the trajectories. See Appendix B.3 for details. After bounding these terms by the corresponding
bonus terms and eluder analysis, the final regret will then follow.

5 CONCLUSION

This paper studies RLHF with inconsistent multi-agent feedback under general function approxima-
tion from a theoretical point of view. In summary, the inconsistency in agent/human feedback can
result in suboptimal outcomes, especially when feedback comes from diverse agents. To address this
gap, this paper presents the first effort to explore a more realistic setting of RLHF, where feedback
is provided by multiple agents with differing reward functions. We propose a novel algorithm de-
signed to manage inconsistent multi-agent feedback, introducing a Steiner-Point-based confidence
set to harness the advantages of multiple sources of feedback and a weighted importance sampling
technique to handle the complexity of inconsistency. Our theoretical contributions demonstrate the
optimality of this approach and highlight, for the first time, the significant implications and potential
of inconsistent multi-agent feedback in RLHF. Since this work only study the case with one single
ground-truth reward function, it would be interesting to extend our results to the case with multiple
(personalized) ground-truth to handle the preference of users. It would also be important to consider
more general form of inconsistency.
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A MORE RELATED WORK

Reinforcement Learning with Human Feedback (RLHF) has gained substantial attention as an ap-
proach to align machine learning models with human values and preferences. Early works, such
as Knox & Stone (2011)’s exploration of incorporating human feedback into reinforcement learning
agents, established foundational methods for improving learning efficiency through interactive feed-
back mechanisms. A significant breakthrough was achieved by (Christiano et al., 2017), who intro-
duced techniques for scaling human feedback to deep reinforcement learning, enabling the training
of more complex models through reward learning. Further developments included studies by Sti-
ennon et al. (2020), who demonstrated how RLHF could be applied to tasks like summarization,
optimizing model outputs through iterative human feedback loops.

In recent years, advancements have focused on the robustness and scalability of RLHF systems. For
instance,Hwang et al. (2023) proposed sequential preference ranking to enhance feedback efficiency
in complex tasks. Concurrently,Casper et al. (2023) identified open challenges in RLHF, such as
balancing the trade-offs between automation and human involvement, and ensuring scalability to
real-world applications. Additionally,Kaufmann et al. (2023) surveyed approaches for learning re-
ward models from human feedback, emphasizing the shift towards robust policy training over direct
reward optimization. Emerging research also explores AI-assisted feedback mechanisms to aug-
ment human inputs.Lee et al. (2023) demonstrated that integrating AI feedback with RLHF could
maintain model alignment with human values while improving efficiency. Liu (2023)’s work on
transforming human interactions via RLHF highlighted the potential for this methodology in ethical
AI and social robotics. More recently, RLHF has also been extensively studied, e.g., in Wang et al.
(2023); Zhu et al. (2023); Chakraborty et al. (2024); Ye et al. (2024); Chen et al. (2022); Chatterji
et al. (2021); Kaufmann et al. (2023); Li et al. (2023); Du et al. (2024), and references therein.

Overall, RLHF continues to evolve as a pivotal framework for creating systems that reflect human
intent, fostering advancements in areas such as robotics, natural language processing, and ethical
AI. Further research into scalable architectures, enhanced feedback modalities, and cross-domain
applications promises to extend its impact across AI-driven industries.

Research has also explored broader preference structures beyond the reward-based paradigm, e.g.,
in Munos et al. (2023); Rosset et al. (2024); Swamy et al. (2024); Ye et al. (2024), and techniques
for post-processing models (Lin et al., 2023; Zheng et al., 2024). Direct preference learning has
notably advanced RLHF, particularly in the post-training of open-source models. Following these
advancements, recent studies, e.g., (Guo et al., 2024b; Liu et al., 2024; Meng et al., 2024; Tajwar
et al., 2024; Xie et al., 2024), have demonstrated the effectiveness of on-policy sampling and online
exploration in improving direct preference learning. In particular, online iterative DPO (Xiong et al.,
2024; Xu et al., 2023) and its variants, e.g., Chen et al. (2024); Rosset et al. (2024), have achieved
state-of-the-art results. Moreover, robust learning is also one related direction studying the corrup-
tion/imperfection in the feedback, e.g., in He et al. (2022); Ye et al. (2023); Wei et al. (2022); Wang
et al. (2020); Kong et al. (2021); Yan et al. (2024), and references therein.

B PROOF FOR THEOREM 1

Our regret proof involves three important steps, which are related to the three new ideas in our
algorithm design, detailed as follows. First, since in our new Idea I in the algorithm design we
construct the confidence set based on the Steiner point technique, in Step I below (Appendix B.1),
we derive the confidence radius and construct the high-probability event that are related to the impact
of Steiner point in historical sample sets and bonus term values. Second, since in our new Idea II
in the algorithm design we design a sub-importance sampling method for reducing the complexity
in the function space, in Step II below (Appendix B.2), we derive the sub-regret based on the gap
incurred by such sub-importance sampling and the resulting bonus terms. Third, since in our new
Idea III in the algorithm design we design scaled confidence-based weights for reducing biased in
each agent feedback, in Step III below (Appendix B.3), based on Step I and Step II, we derive the
final regret based on a deforming indicator function and the threshold-based bonus values.
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B.1 STEP I: STEINER-POINT-BASED HIGH PROBABILITY EVENTS

In Step I, we first derive the confidence radius for both the reward confidence setRk and the transi-
tion confidence set Pk in Algorithm 1. Because the absolute reward value is unavailable, we cannot
construct high probability events for the V -value function any more. However, based on these, we
can still construct a high probability event directly for the uncertain policies.

B.1.1 HIGH PROBABILITY EVENT FOR THE REWARD FUNCTION

Lemma 1. For all (k) ∈ [K], if for all k > 0, we let βk,H+1 = 0 and from h = H to h = 1,

βR
k ≥

(
12λ+ 12 ln (2HNK(ϵ, α)/δ) + 12γξ sup

t<k
βR
t + 12

(
5 sup

t
βR
t γ

)2

K + 60 sup
t
βR
t γ
√
KC1(k, ξ)

)1/2

,

(21)

where NK(ϵ, α) = N (R, ϵ, ∥ · ∥∞) · N (Sα ×Aα, ϵ, ∥ · ∥∞) and C1(k, ξ) =
2
(
ξ2 + 2k + 3 ln(2/δ)

)
, then with high probability at least 1 − δ, where δ ∈ (0, 1), we

have R∗(·) ∈ Rk.

Proof. To prove R∗(·) ∈ Rk with probability at least 1 − δ, we prove that with probability at least
1− δ, we have for all k ∈ [K],

λ+

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ (τ | R∗)− σ

(
τ | R̂k

))2
max

{
1,Λt(θ)/

∣∣∣σ(τ | R∗)− σ(τ | R̂t)
∣∣∣} ≤ βR, (22)

by mathematical induction.

Base case: First, we have that Eq. (22) trivially holds for episode k = 1.

Hypothesis: Then, for episode k > 1, we assume that Eq. (22) holds for all episode t ≤ k−1, which
means that for all episodes t ∈ [k − 1],

λ+

t−1∑
i=1

∑
τ∈Γ̂i|i−1

(
σ (τ | R∗)− σ

(
τ | R̂t

))2
max

{
1,Λi(θ)/

∣∣∣σ(τ | R∗)− σ(τ | R̂i)
∣∣∣} ≤ βR. (23)

Induction: Thus, for episode k, we let Rϵ,σ
k be a ϵ-covering set of Rk under the ∥ · ∥∞ norm.

Then, we construct Rϵ,σ

k = Rϵ,σ
k ⊕ βRBϵ,σk as a

(
1 + βR

)
ϵ-covering set of Rϵ,σ

k under the
∥ · ∥∞ norm, where Bϵ,σk is the bonus function space which can be relaxed under our sub-
importance sampling idea (i.e., represented by the sum over τ ∈ Γi|i−1), and note that the cov-
ering set depends on the link function σ. Thus, to compare with R∗, let R̄k ∈ R

ϵ,σ

k so that∥∥σ(R̄k (·)− R̄k (τ0))− σ(R∗
t (·)−R∗

t (τ0))
∥∥
∞ ≤ ϵ̄ =

(
1 + βR

)
ϵ. Then, by letting

R̃k = argmin
R∈Rk−1

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R (τ)−R (τ0))− σ(R̄t(τ)− R̄t(τ0))

)2
. (24)
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we have thatk−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̂k (τ)− R̂k (τ0))− σ(R̄t(τ)− R̄t(τ0))

)21/2

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̂k (τ)− R̂k (τ0))− σ(R∗

t (τ)−R∗
t (τ0))

)21/2

+
√
kϵ̄

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̃k (τ)− R̃k (τ0))− σ(R∗

t (τ)−R∗
t (τ0))

)21/2

+
√
kϵ̄

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̃k (τ)− R̃k (τ0))− σ(R̄t(τ)− R̄t(τ0))

)21/2

+ 2
√
kϵ̄, (25)

where the first and third inequality is obtained by applying∥∥σ(R̄k (·)− R̄k (τ0))− σ(R∗
t (·)−R∗

t (τ0))
∥∥
∞ ≤ ϵ̄ =

(
1 + βR

)
ϵ.

Finally, we leverage the relation between
∑k−1

t=1

∑
τ∈Γ̂t|t−1

(
σ(R̂k (τt)− R̂k (τ0))− σ(R̄t(τt)− R̄t(τ0))

)2
and

∑k−1
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̃k (τt)− R̃k (τ0))− σ(R̄t(τt)− R̄t(τ0))

)2
above to complete the in-

duction step. Specifically, consider a function space Rϵ,σ

k : Γ̂ → R and filtered sequence {τk, ηk}
in Γ̂ × R, such that, ηk is conditionally zero-mean G-sub-Gaussian noise. For R∗(·) : Γ̂ → R,
suppose that fk = σ(R∗ (τk)− R∗ (τ0)) + ηk and there exists a function R̄t ∈ R

ϵ,σ

k , such that, for
any k ∈ [K],

∑k
t=1 |σ(R∗ (τt)−R∗ (τ0))− σ(Rt (τt)−Rt (τ0))| ≤ ζ. If R̂k is an approximate

empirical risk minimization solution up to some ϵ′ ≥ 0, i.e., k∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̂k (τ)− R̂k (τ0))− ft

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̂t)− ft
∣∣∣}


1/2

≤ min
R∈Rk−1

 k∑
t=1

∑
τ∈Γ̂t|t−1

(σ(R (τ)−R (τ0))− ft)2

max
{
1,Λt(θ)/

∣∣∣σ(τ | R̂t)− ft
∣∣∣}
1/2

+
√
kϵ′, (26)

with probability at least 1− δ, then we have for all episodes k ∈ [K], k∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(R̂k (τt)− R̂k (τ0))− σ(R̄t(τt)− R̄t(τ0))

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}


1/2

≤ 10η2 ln
(
2N

(
Rϵ,σ

k , ϵ, ∥ · ∥∞
)
/δ
)

+ 5

k∑
t=1

∑
τ∈Γ̂t|t−1

∣∣∣σ(R̂t (τt)− R̂t (τ0))− σ(R̄ (τt)− R̄ (τ0))
∣∣∣ ξt

max
{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

+ 10 (γ + ϵ′)
(
(γ + ϵ′) k +

√
kC1(k, ξ)

)
, (27)

where C1(k, ξ) = 2
(
ξ2 + 2kG2 + 3G2 ln(2/δ)

)
. The rea-

son is as follows. For R ∈ Rϵ,σ

k , we define ϕ (R, τk) =

−a
[
(σ (τk | R)− fk)2 −

(
σ
(
τk | R̄

)
− fk

)2]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣},

where a = G−2

4 . LetRϵ be an ϵ-cover ofR under the ∥ · ∥∞ norm. Denote the cardinality ofRϵ by
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N = N (R, ϵ, ∥ · ∥∞). Since ϵk is conditional G-sub-Gaussian and ϕ (R, τk) can be written as

ϕ (R, τk) = 2a
[
σ (τk | R)− σ

(
τk | R̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} · ϵk

− a
[
σ (τk | R)− σ

(
τk | R̄

)]2
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

+ 2a
[
σ (τk | R)− σ

(
τk | R̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} ξ, (28)

and ϕ (R, τk) is conditional 2aG
[
σ (τk | R)− σ

(
τk | R̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}-

sub-Gaussian with mean

µ = −a
[
σ (τk | R)− σ

(
τk | R̄

)]2
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

+ 2aξ
[
σ (τk | R)− σ

(
τk | R̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} , (29)

where a = G−2

4 . According to Lemma 5, if a variableX is σ-sub-Gaussian with mean µ conditional
on S, the property of sub-Gaussianity implies that

lnE[exp(s(X − µ)) | S] ≤ σ2s2

2
. (30)

By taking s = 1 in the inequality above, we get

lnEfk [exp (ϕ (R, τk)− µ) | τk,Γk−1] ≤
4a2G2

[
σ (τk | R)− σ

(
τk | R̄

)]2
2max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}2

=

[
σ (τk | R)− σ

(
τk | R̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}2 . (31)

It follows that

lnEfk [exp (ϕ (R, τk)) | τk,Γt−1]

≤
[
σ (τk | R)− σ

(
τk | R̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}2 −

[
σ (τk | R)− σ

(
τk | R̄

)]2
4G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

+
ξk
[
σ (τk | R)− σ

(
τk | R̄

)]2
2G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

≤ −
[
σ (τk | R)− σ

(
τk | R̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

+
ξk
[
σ (τk | R)− σ

(
τk | R̄

)]2
2G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} , (32)

where the second inequality is because max
{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} ≥ 1. According

to Lemma 4 with λ = 1, we have for all R ∈ Rϵ and k ∈ [K], with probability at least 1− δ/2,

k∑
t=1

ϕ (R, τt) ≤ −
k∑

t=1

[
σ (τk | R)− σ

(
τk | R̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣}

+

k∑
t=1

[
σ (τk | R)− σ

(
τk | R̄

)]2
ξ

2G2 max
{
1,Λk(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂k)
∣∣∣} + ln(2N/δ). (33)
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Additionally, for all episode k ∈ [K], we have with probability at least 1− δ/2,

k∑
t=1

(
σ
(
τt | R̄

)
− ft

)2 ≤ k∑
t=1

(
σ
(
τt | R̄

)
− σ (τt | R∗) + σ (τt | R∗)− ft

)2
≤ 2

k−1∑
t=1

((
σ
(
τt | R̄

)
− σ (τt | R∗)

)2
+ (σ (τt | R∗)− ft)2

)
≤ 2

(
k−1∑
t=1

ξ2t +

k−1∑
t=1

ϵ2t

)
≤ 2

(
ξ2 + 2kG2 + 3G2 ln(2/δ)

)
, (34)

where the first inequality is obtained since Cauchy-Schwarz inequality and the last inequality is due
to Lemma 4. Now, given R̂k, there exists R ∈ Rϵ,σ

k , such that
∥∥∥R̂k −R

∥∥∥
∞
≤ ϵ. With probability

at least 1− δ/2,

k∑
t=1

[
(σ (τt | R)− ft)2 −

(
σ
(
τt | R̄

)
− ft

)2]
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

≤


√√√√ k∑

t=1

(
σ
(
τt | R̂t

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}+

√
kϵ

2

−
k∑

t=1

(
σ
(
τt | R̄

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

≤


√√√√ k∑

t=1

(
σ
(
τt | R̄t

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}+

√
k(ϵ+ ϵ′)

2

−
k∑

t=1

(
σ
(
τt | R̄

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

≤ (ϵ+ ϵ′)
2
k + 2 (ϵ+ ϵ′)

√
kC1(k, ξ), (35)
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where the first inequality uses
∣∣∣σ (τt | R)− σ (τt | R̂)∣∣∣ ≤ ϵ and triangle inequality for all t. Finally,

with probability at least 1− δ, we have

(
k∑

t=1

(
σ
(
τt | R̂t

)
− σ

(
τt | R̄

))2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣})1/2

≤
√
ϵ2k +

(
k∑

t=1

(
σ (τt | R)− σ

(
τt | R̄

))2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣})1/2

≤
√
ϵ2k +

(
4

k∑
t=1

(
σ (τt | R)− σ

(
τt | R̄

))
ξt/max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

+ 8G2 ln(2N/δ)− 8G2
k∑

t=1

ϕ (R, τt)

)1/2

≤
√
ϵ2k +

(
4

k∑
t=1

∣∣∣σ (τt | R̂t

)
− σ

(
τt | R̄

)∣∣∣ ξt/max
{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

+4ϵξ + 8G2 ln(2N/δ) + 2 (ϵ+ ϵ′)
2
t+ 4 (ϵ+ ϵ′)

√
kC ′

1(k, ξ)
)1/2

≤

(
10G2 ln(2N/δ) + 5

k∑
t=1

∣∣∣σ (τt | R̂t

)
− σ

(
τt | R̄

)∣∣∣ ξt/max
{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

+5ϵξ + 8 (ϵ+ ϵ′)
2
k + 5 (ϵ+ ϵ′)

√
tC1(k, ξ)

)1/2
, (36)

where the second inequality is deduced from Eq. (33) and the last inequality uses Cauchy-Schwarz
inequality.

Up to here, by letting ϵ′ = 2ϵ̄, G = 1 and adding the sum over only sub-sampling feedback Γt|t−1,
and taking a union bound over R̄κ ∈ R

ϵ,σ

k , we can have that with probability at least 1 − δ, the
following inequality holds for all episodes k ∈ [K] :

k−1∑
t=1

∑
τ∈Γt|t−1

(
σ
(
τt | R̂k

)
− R̄κ (τt)

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

≤ 10 ln (2HNK(ϵ)/δ) + 5

k−1∑
t=1

∑
τ∈Γt|t−1

∣∣∣σ (τt | R̂k

)
− σ

(
τt | R̄κ

)∣∣∣ · ξt
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

+ 10(ϵ+ 2ϵ̄) ·
(
(ϵ+ 2ϵ̄)k +

√
2k (ξ2 + 2k + 3 ln(2/δ))

)
, (37)

Further, for all episodes t ≤ k − 1, we have that∣∣∣σ (τt | R̂k

)
− σ

(
τt | R̄κ

)∣∣∣ /max
{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}

≤
∣∣∣σ (τt | R̂k

)
− σ

(
τt | R̄κ

)∣∣∣ /max
{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}+ ϵ

≤

∣∣∣σ (τt | R̂k

)
− σ

(
τt | R̂t

)∣∣∣
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣} +

∣∣∣σ (τt | R̄κ

)
− σ

(
τt | R̂t

)∣∣∣
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣} + ϵ

≤ 2αβR + ϵ, (38)
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where the last inequality is due to R̂k ∈ Rk−1 ⊂ Rt and the induction hypothesis that R̄κ ∈ Rt for
κ ≥ t. Therefore, we have that, with probability at least 1− δ,λ+

k−1∑
t=1

∑
τ∈Γt|t−1

(
σ (τt | Rk)− σ

(
τt | R̄κ

))2
max

{
1,Λt(θ)/

∣∣σ(τ | R̄)− σ(τ | Rt)
∣∣}
1/2

≤

k−1∑
t=1

∑
τ∈Γt|t−1

(
σ
(
τt | R̂k

)
− σ

(
τt | R̄κ

))2
max

{
1,Λt(θ)/

∣∣∣σ(τ | R̄)− σ(τ | R̂t)
∣∣∣}


1/2

+
√
tϵ̄+
√
λ

≤
(
10 ln (2HNK(ϵ)/δ) + 10αξ sup

s<t
βR
s + 5ϵξ + 10

(
2βR

κ + 3
)2
ϵ2K + 10

(
2βR

κ + 3
)
γ
√
KC1(k, ξ)

)1/2

+
(
βR
κ + 1

)
ϵ
√
K +

√
λ

≤

(
12λ+ 12 ln (2HNK(ϵ)/δ) + 12γξ sup

t<k
βR
s + 12

(
5 sup

s
βR
s γ

)2

K + 60 sup
s
βR
s γ
√
KC1(k, ξ)

)1/2

≤ βR
k , (39)

where the first inequality uses the triangle inequality and the second last inequality uses Cauchy-
Schwarz inequality. Therefore, we validate the statement in Eq. (22). For all k ∈ [K], by taking
κ = k in Eq. (22), we finally complete the proof.

By Lemma 1, we know that the comparison based on ground-truth reward functionR∗(·) ∈ Rk with
high probability.

B.1.2 HIGH PROBABILITY EVENT FOR THE TRANSITION KERNEL

Lemma 2. For all (k) ∈ [K], if for all k > 0, we let βk,H+1 = 0 and from h = H to h = 1,

βP
k ≥

(
12λ+ 12 ln (2HNK(ϵ, α)/δ) + 12γξ sup

t<k
βP
t + 12

(
5 sup

t
βP
t γ

)2

K + 60 sup
t
βP
t γ
√
KC1(k, ξ)

)1/2

,

(40)

where NK(ϵ, α) = N (P, ϵ, ∥ · ∥∞) · N (Sα ×Aα, ϵ, ∥ · ∥∞) and C1(k, ξ) =
2
(
ξ2 + 2k + 3 ln(2/δ)

)
, then with high probability at least 1 − δ, where δ ∈ (0, 1), we

have P∗(·) ∈ Pk.

Proof. To prove P∗(·) ∈ Pk with probability at least 1 − δ, we prove that with probability at least
1− δ, we have for all k ∈ [K],

λ+

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ (τ | P∗)− σ

(
τ | P̂k

))2
max

{
1,Λt(θ)/

∣∣∣σ(τ | P∗)− σ(τ | P̂t)
∣∣∣} ≤ βP, (41)

by mathematical induction.

Base case: First, we have that Eq. (41) trivially holds for episode k = 1.

Hypothesis: Then, for episode k > 1, we assume that Eq. (41) holds for all episode t ≤ k−1, which
means that for all episodes t ∈ [k − 1],

λ+

t−1∑
i=1

∑
τ∈Γ̂i|i−1

(
σ (τ | P∗)− σ

(
τ | P̂t

))2
max

{
1,Λi(θ)/

∣∣∣σ(τ | P∗)− σ(τ | P̂i)
∣∣∣} ≤ βP. (42)
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Induction: Thus, for episode k, we letPϵ,σ
k be a ϵ-covering set ofPk under the ∥·∥∞ norm. Then, we

construct Pϵ,σ

k = Pϵ,σ
k ⊕ βPBϵ,σk as a

(
1 + βP) ϵ-covering set of Pϵ,σ

k under the ∥ · ∥∞ norm, where
Bϵ,σk is the bonus function space which can be relaxed under our sub-importance sampling idea (i.e.,
represented by the sum over τ ∈ Γ̂i|i−1), and note that the covering set depends on the link function
σ. Thus, to compare with P∗, let P̄k ∈ P

ϵ,σ

k so that
∥∥σ(P̄k (·)− P̄k (τ0))− σ(P∗

t (·)− P∗
t (τ0))

∥∥
∞ ≤

ϵ̄ =
(
1 + βP) ϵ. Then, by letting

P̃k = argmin
P∈Pk−1

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P (τ)− P (τ0))− σ(P̄t(τ)− P̄t(τ0))

)2
. (43)

we have that

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̂k (τ)− P̂k (τ0))− σ(P̄t(τ)− P̄t(τ0))

)21/2

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̂k (τ)− P̂k (τ0))− σ(P∗

t (τ)− P∗
t (τ0))

)21/2

+
√
kϵ̄

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̃k (τ)− P̃k (τ0))− σ(P∗

t (τ)− P∗
t (τ0))

)21/2

+
√
kϵ̄

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̃k (τ)− P̃k (τ0))− σ(P̄t(τ)− P̄t(τ0))

)21/2

+ 2
√
kϵ̄, (44)

where the first and third inequality is obtained by applying∥∥σ(P̄k (·)− P̄k (τ0))− σ(P∗
t (·)− P∗

t (τ0))
∥∥
∞ ≤ ϵ̄ =

(
1 + βP) ϵ.

Finally, we leverage the relation between
∑k−1

t=1

∑
τ∈Γ̂t|t−1

(
σ(P̂k (τt)− P̂k (τ0))− σ(P̄t(τt)− P̄t(τ0))

)2
and

∑k−1
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̃k (τt)− P̃k (τ0))− σ(P̄t(τt)− P̄t(τ0))

)2
above to complete the induc-

tion step. Specifically, consider a function space Pϵ,σ

k : Γ̂ → R and filtered sequence {τk, ηk}
in Γ × R, such that, ηk is conditionally zero-mean G-sub-Gaussian noise. For P∗(·) : Γ̂ → R,
suppose that fk = σ(P∗ (τk) − P∗ (τ0)) + ηk and there exists a function P̄t ∈ P

ϵ,σ

k , such that, for
any k ∈ [K],

∑k
t=1 |σ(P∗ (τt)− P∗ (τ0))− σ(Rt (τt)−Rt (τ0))| ≤ ζ. If P̂k is an approximate

empirical risk minimization solution up to some ϵ′ ≥ 0, i.e.,

 k∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̂k (τ)− P̂k (τ0))− ft

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̂t)− ft
∣∣∣}


1/2

≤ min
P∈Pk−1

 k∑
t=1

∑
τ∈Γ̂t|t−1

(σ(P (τ)− P (τ0))− ft)2

max
{
1,Λt(θ)/

∣∣∣σ(τ | P̂t)− ft
∣∣∣}
1/2

+
√
kϵ′, (45)
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with probability at least 1− δ, then we have for all episodes k ∈ [K],

 k∑
t=1

∑
τ∈Γ̂t|t−1

(
σ(P̂k (τt)− P̂k (τ0))− σ(P̄t(τt)− P̄t(τ0))

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}


1/2

≤ 10η2 ln
(
2N

(
Pϵ,σ

k , ϵ, ∥ · ∥∞
)
/δ
)

+ 5

k∑
t=1

∑
τ∈Γ̂t|t−1

∣∣∣σ(P̂t (τt)− P̂t (τ0))− σ(P̄ (τt)− P̄ (τ0))
∣∣∣ ξt

max
{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

+ 10 (γ + ϵ′)
(
(γ + ϵ′) k +

√
kC1(k, ξ)

)
, (46)

where C1(k, ξ) = 2
(
ξ2 + 2kG2 + 3G2 ln(2/δ)

)
. The rea-

son is as follows. For P ∈ Pϵ,σ

k , we define ϕ (P, τk) =

−a
[
(σ (τk | P)− fk)2 −

(
σ
(
τk | P̄

)
− fk

)2]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}, where

a = G−2

4 . Let Pϵ be an ϵ-cover of P under the ∥ · ∥∞ norm. Denote the cardinality of Pϵ by
N = N (P, ϵ, ∥ · ∥∞). Since ϵk is conditional G-sub-Gaussian and ϕ (P, τk) can be written as

ϕ (P, τk) = 2a
[
σ (τk | P)− σ

(
τk | P̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} · ϵk

− a
[
σ (τk | P)− σ

(
τk | P̄

)]2
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

+ 2a
[
σ (τk | P)− σ

(
τk | P̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} ξ, (47)

and ϕ (P, τk) is conditional 2aG
[
σ (τk | P)− σ

(
τk | P̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}-

sub-Gaussian with mean

µ = −a
[
σ (τk | P)− σ

(
τk | P̄

)]2
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

+ 2aξ
[
σ (τk | P)− σ

(
τk | P̄

)]
/max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} , (48)

where a = G−2

4 . According to Lemma 5, if a variableX is σ-sub-Gaussian with mean µ conditional
on S, the property of sub-Gaussianity implies that

lnE[exp(s(X − µ)) | S] ≤ σ2s2

2
. (49)

By taking s = 1 in the inequality above, we get

lnEfk

[
exp (ϕ (P, τk)− µ) | τk, Γ̂k−1

]
≤

4a2G2
[
σ (τk | P)− σ

(
τk | P̄

)]2
2max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}2

=

[
σ (τk | P)− σ

(
τk | P̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}2 . (50)
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It follows that

lnEfk

[
exp (ϕ (P, τk)) | τk, Γ̂t−1

]
≤

[
σ (τk | P)− σ

(
τk | P̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}2 −

[
σ (τk | P)− σ

(
τk | P̄

)]2
4G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

+
ξk
[
σ (τk | P)− σ

(
τk | P̄

)]2
2G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

≤ −
[
σ (τk | P)− σ

(
τk | P̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

+
ξk
[
σ (τk | P)− σ

(
τk | P̄

)]2
2G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} , (51)

where the second inequality is because max
{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} ≥ 1. According

to Lemma 4 with λ = 1, we have for all P ∈ Pϵ and k ∈ [K], with probability at least 1− δ/2,

k∑
t=1

ϕ (P, τt) ≤ −
k∑

t=1

[
σ (τk | P)− σ

(
τk | P̄

)]2
8G2 max

{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣}

+

k∑
t=1

[
σ (τk | P)− σ

(
τk | P̄

)]2
ξ

2G2 max
{
1,Λk(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂k)
∣∣∣} + ln(2N/δ). (52)

Additionally, for all episode k ∈ [K], we have with probability at least 1− δ/2,

k∑
t=1

(
σ
(
τt | P̄

)
− ft

)2 ≤ k∑
t=1

(
σ
(
τt | P̄

)
− σ (τt | P∗) + σ (τt | P∗)− ft

)2
≤ 2

k−1∑
t=1

((
σ
(
τt | P̄

)
− σ (τt | P∗)

)2
+ (σ (τt | P∗)− ft)2

)
≤ 2

(
k−1∑
t=1

ξ2t +

k−1∑
t=1

ϵ2t

)
≤ 2

(
ξ2 + 2kG2 + 3G2 ln(2/δ)

)
, (53)

where the first inequality is obtained since Cauchy-Schwarz inequality and the last inequality is due
to Lemma 4. Now, given P̂k, there exists P ∈ Pϵ,σ

k , such that
∥∥∥P̂k − P

∥∥∥
∞
≤ ϵ. With probability at
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least 1− δ/2,

k∑
t=1

[
(σ (τt | P)− ft)2 −

(
σ
(
τt | P̄

)
− ft

)2]
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

≤


√√√√ k∑

t=1

(
σ
(
τt | P̂t

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}+

√
kϵ

2

−
k∑

t=1

(
σ
(
τt | P̄

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

≤


√√√√ k∑

t=1

(
σ
(
τt | P̄t

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}+

√
k(ϵ+ ϵ′)

2

−
k∑

t=1

(
σ
(
τt | P̄

)
− ft

)2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

≤ (ϵ+ ϵ′)
2
k + 2 (ϵ+ ϵ′)

√
kC1(k, ξ), (54)

where the first inequality uses
∣∣∣σ (τt | P)− σ (τt | P̂)∣∣∣ ≤ ϵ and triangle inequality for all t. Finally,

with probability at least 1− δ, we have

(
k∑

t=1

(
σ
(
τt | P̂t

)
− σ

(
τt | P̄

))2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣})1/2

≤
√
ϵ2k +

(
k∑

t=1

(
σ (τt | P)− σ

(
τt | P̄

))2
/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣})1/2

≤
√
ϵ2k +

(
4

k∑
t=1

(
σ (τt | P)− σ

(
τt | P̄

))
ξt/max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

+ 8G2 ln(2N/δ)− 8G2
k∑

t=1

ϕ (P, τt)

)1/2

≤
√
ϵ2k +

(
4

k∑
t=1

∣∣∣σ (τt | P̂t

)
− σ

(
τt | P̄

)∣∣∣ ξt/max
{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

+4ϵξ + 8G2 ln(2N/δ) + 2 (ϵ+ ϵ′)
2
t+ 4 (ϵ+ ϵ′)

√
kC ′

1(k, ξ)
)1/2

≤

(
10G2 ln(2N/δ) + 5

k∑
t=1

∣∣∣σ (τt | P̂t

)
− σ

(
τt | P̄

)∣∣∣ ξt/max
{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

+5ϵξ + 8 (ϵ+ ϵ′)
2
k + 5 (ϵ+ ϵ′)

√
tC1(k, ξ)

)1/2
, (55)

where the second inequality is deduced from Eq. (52) and the last inequality uses Cauchy-Schwarz
inequality.

Up to here, by letting ϵ′ = 2ϵ̄, G = 1 and adding the sum over only sub-sampling feedback Γt|t−1,
and taking a union bound over P̄κ ∈ P

ϵ,σ

k , we can have that with probability at least 1 − δ, the
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following inequality holds for all episodes k ∈ [K] :

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ
(
τt | P̂k

)
− P̄κ (τt)

)2
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

≤ 10 ln (2HNK(ϵ)/δ) + 5

k−1∑
t=1

∑
τ∈Γt|t−1

∣∣∣σ (τt | P̂k

)
− σ

(
τt | P̄κ

)∣∣∣ · ξt
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

+ 10(ϵ+ 2ϵ̄) ·
(
(ϵ+ 2ϵ̄)k +

√
2k (ξ2 + 2k + 3 ln(2/δ))

)
, (56)

Further, for all episodes t ≤ k − 1, we have that∣∣∣σ (τt | P̂k

)
− σ

(
τt | P̄κ

)∣∣∣ /max
{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}

≤
∣∣∣σ (τt | P̂k

)
− σ

(
τt | P̄κ

)∣∣∣ /max
{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}+ ϵ

≤

∣∣∣σ (τt | P̂k

)
− σ

(
τt | P̂t

)∣∣∣
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣} +

∣∣∣σ (τt | P̄κ

)
− σ

(
τt | P̂t

)∣∣∣
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣} + ϵ

≤ 2αβP + ϵ, (57)

where the last inequality is due to P̂k ∈ Pk−1 ⊂ Pt and the induction hypothesis that P̄κ ∈ Pt for
κ ≥ t. Therefore, we have that, with probability at least 1− δ,λ+

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ (τt | Rk)− σ

(
τt | P̄κ

))2
max

{
1,Λt(θ)/

∣∣σ(τ | P̄)− σ(τ | Rt)
∣∣}
1/2

≤

k−1∑
t=1

∑
τ∈Γ̂t|t−1

(
σ
(
τt | P̂k

)
− σ

(
τt | P̄κ

))2
max

{
1,Λt(θ)/

∣∣∣σ(τ | P̄)− σ(τ | P̂t)
∣∣∣}


1/2

+
√
tϵ̄+
√
λ

≤
(
10 ln (2HNK(ϵ, α)/δ) + 10αξ sup

s<t
βP
s + 5ϵξ + 10

(
2βP

κ + 3
)2
ϵ2K + 10

(
2βP

κ + 3
)
γ
√
KC1(k, ξ)

)1/2

+
(
βP
κ + 1

)
ϵ
√
K +

√
λ

≤

(
12λ+ 12 ln (2HNK(ϵ, α)/δ) + 12γξ sup

t<k
βP
s + 12

(
5 sup

s
βP
sγ

)2

K + 60 sup
s
βP
sγ
√
KC1(k, ξ)

)1/2

≤ βP
k , (58)

where the first inequality uses the triangle inequality and the second last inequality uses Cauchy-
Schwarz inequality. Therefore, we validate the statement in Eq. (41). For all k ∈ [K], by taking
κ = k in Eq. (41), we finally complete the proof.

By Lemma 2, we know that the comparison based on ground-truth reward function P∗(·) ∈ Pk with
high probability.

B.1.3 HIGH PROBABILITY EVENT FOR THE POLICY

Lemma 3. Under the high probability events for reward function R and transition kernel P, we
have π∗ ∈ Ωk for all episodes k.
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Proof. First, we know that Eτ∗∼(P,π∗)σ (τ
∗ | R∗) ≥ 0. We decompose the Left-Hand-Side (LHS)

of the above inequality into the following three terms:

Eτ∗∼(P,π∗)σ (τ
∗ | R∗)

= Eτ∗∼(P,π∗)σ (τ
∗ | R∗)− Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗)

+ Eτ∗∼(P̂k,π∗)σ (τ
∗ | R∗)− Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)

+ Eτ∗∼(P̂k,π∗)σ (τ
∗ | R) . (59)

We can upper bound the first term in the following way:

Eτ∗∼(P,π∗)σ (τ
∗ | R∗)− Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗) ≤ Eτ∗∼(P̂k,π∗)
[
bPk (τ

∗)
]
. (60)

By Lemma 2, we have that,

Eτ∗∼(P̂k,π∗)σ (τ
∗ | R∗)− Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)

≤ Eτ∗∼(P̂k,π∗) max
f1,f2∈BT,k

|σ (τ∗ | R1)− σ (τ∗ | R2)|

= Eτ∗∼(P̂k,π∗),τ0∼(P̂k,π0)b
R
k . (61)

Therefore, we have

Eτ∗∼(P̂k,π∗)

(
T̂k (τ

∗) + bRk,k (τ
∗) + bPk (τ

∗)
)
≥ 0,∀π0, (62)

which indicates that π∗ ∈ Ωk.

B.2 STEP II: SUB-REGRET UNDER SUM-IMPORTANT STEINER POINTS

According to the confidence set Eq. (15) in Algorithm 1, for all P ′ ∈ Pk, we have

λ+
∑

t∈[k−1]

∑
τ∈Γt|t−1,h∈[H]

(〈
P ′ (· | st,h, at,h)− P̂k (· | st,h, at,h) , Vt,h

〉)2
min

{
1,ΛP

t (θ)/
∣∣∣〈[P ′ − P̂t] (· | st,h, at,h) , Vt,h

〉∣∣∣} ≤ βP . (63)

Let

bPk (s, a) ≜ max
V ∈V,
P ′∈Pk

(
P ′(· | s, a)− P̂k(· | s, a)

)
V (s, a)(

λ+
∑k−1

t=1

∑
τ∈Γt|t−1

⟨[P ′−P̂k](·|st,h,at,h),Vt,h⟩2
max{1,ΛP

t (θ)/|⟨[P ′−P̂t](·|st,h,at,h),Vt,h⟩|}

)1/2
. (64)

According to Eq. (63) and Eq. (64), we have
〈
P ′ (· | sk,h, ak,h)− P̂k (· | sk,h, ak,h) , Vk,h

〉
≤√

βP bPk (s, a), and thus ∣∣∣Vk,1(τ0 | P ′)− Vk,1(τ0 | P̂k)
∣∣∣ ≤√βP bPk (τk), (65)

where Vk,1(τ0 | P ) is equal to Vk,1(τ0) under transition P . Then, according to Eq. (2) and the
triangle inequality, we have

−ξk ≤ Vk,1(τ0 | P )− Vk,1(τ0 | P ∗) ≤ 2
√
βP bPk (s, a) + ξk, (66)

under the high probability event P ∗ ∈ Pk.

Then, we can show the sub-regret due to the inconsistency in the agent feedback as follows,

Reg(K) =

K∑
k=1

[V ∗
1 (τ0)− V πk

1 (τ0)] ≤ Hζ +
K∑

k=1

[Vk,1 (τ0)− V πk
1 (τ0)] , (67)
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where the inequality uses Eq. (66). Next, we focus on bounding the second term on the
right-hand side of Eq. (67). A thought experiment: if the reward value for each state action
pair rh is available, then given any policy π : S → A and a function f : S × A →
[0, 1], at step h, the average Bellman error of f under the roll-in policy π, E(f, π, h) =
E [f (sh, ah)− rh − f (sh+1, ah+1) | a1:h−1 ∼ π, ah:h+1 ∼ πf ] can be used to bound the overesti-
mation gap: Vf − V πf =

∑H
h=1 E (f, πf , h), where Vf = E [f (s1, πf (s1))]. This is because

H∑
h=1

E [f (sh, ah)− rh − f (sh+1, ah+1) | a1:h−1 ∼ πf , ah:h+1 ∼ πf ]

=

H∑
h=1

E [f (sh, ah)− rh − f (sh+1, ah+1) | a1:H ∼ πf ]

= E

[
H∑

h=1

(f (sh, ah)− rh − f (sh+1, ah+1)) | a1:H ∼ πf

]

= E [f (s1, πf (s1))]− E

[
H∑

h=1

rh | a1:H ∼ πf

]
= Vf − V πf , (68)

where the first equality is because allH expected values share the same distribution over trajectories,
which is the one induced by a1:H ∼ πf . Inspired by this idea, we can develop the upper bound of
the the second term on the right-hand side of Eq. (67), when the reward value for each state action
pair rh is unavailable, i.e., only a trajectory-wide comparison is available.

B.3 STEP III: BOUND THE SUM OF POLICY UNCERTAIN BONUSES

Now, we can upper bound the cumulative regret in Theorem 1 as follows. Since −ξk ≤ Vk,1(τ0 |
P )− Vk,1(τ0 | P ∗) ≤ 2

√
βP bPk (s, a) + ξk, for all episodes k ∈ [K], we have that

Reg(K) =

K∑
k=1

Eτ∗∼(P∗,π∗) [σ (τ
∗ | R∗)]− Eτk∼(P∗,πk) [σ (τk | R∗)]

=

K∑
k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)− Eτk∼(P̂k,πk)σ (τk | R)
)

+

K∑
k=1

(
Eτ∗∼(P∗,π∗)σ (τ

∗ | R∗)− Eτk∼(P∗,πk)σ (τk | R
∗)
)

−
K∑

k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗)− Eτk∼(P̂k,πk)σ (τk | R
∗)
)

+

K∑
k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R∗)− Eτk∼(P̂k,πk)σ (τk | R
∗)
)

−
K∑

k=1

(
Eτ∗∼(P̂k,π∗)σ (τ

∗ | R)− Eτk∼(P̂k,πk)σ (τk | R)
)
. (69)

We can bound the first term, second and third terms, fourth and fifth terms one-by-one. By definition,
we have 0 ≤ bRk (τ) ≤ 1 and 0 ≤ bPk (τ) ≤ 1. By Azuma’s inequality, the following inequality holds
with probability at least 1− δ/2,

Reg(K) ≤ ξ + E

 K∑
k=1

∑
τ∈Γt|t−1

bRk + bPk (τk) + 4
√
K log(4/δ)

 . (70)
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Thus,

Reg(K) ≤ξ +
K∑

k=1

H∑
h=1

Eπk
[Eh (fk, sk,h, ak,h)]

≤2Hζ + 2
∑

(k,h):σk,h=1

Eπk

[
min

(
1, βR

k,hb
R
k,h (sk,h, ak,h)

)]
︸ ︷︷ ︸

p1

+ 2
∑

(k,h):σk,h>1

Eπk

[
min

(
1, βP

k,hb
P
k,h (sk,h, ak,h)

)]
︸ ︷︷ ︸

p2

, (71)

Therefore, it follows that

Reg(K) = Õ
(√

KH ln (NK(γ)) dimE(F , λ/K) + ζ (H + dimE(F , λ/K))
)
. (72)

C SUPPORTING RESULTS

For completeness, we provide some preliminary results.

C.1 PRELIMINARY RESULTS IN ZHANG (2023)

Lemma 4. Let {ϵs} be a sequence of zero-mean conditional σ-sub-Gaussian random variables:
lnE

[
eλϵi | Si−1

]
≤ λ2σ2/2, where Si−1 represents the history data. We have for t ≥ 1, with

probability at least 1− δ,

t∑
s=1

ϵ2i ≤ 2tσ2 + 3σ2 ln(1/δ). (73)

Proof. By invoking the logarithmic moment generating function estimate in Theorem 2.29 from
Zhang (2023), we know that for λ ≥ 0,

lnE
[
exp

(
λϵ2i
)
| Si−1

]
≤ λσ2 +

(
λσ2

)2
1− 2λσ2

. (74)

Then, by using iterated expectations due to the tower property of conditional expectation, we get

E

[
exp

(
λ

t∑
i=1

ϵ2i

)]
= E

{
E

[
exp

(
λ

t−1∑
i=1

ϵ2i + ϵ2t

)
| St−1

]}

= E

{
exp

(
λ

t−1∑
i=1

ϵ2i

)
· E
[
exp

(
ϵ2t
)
| St−1

]}

≤ exp

(
λσ2 +

(
λσ2

)2
1− 2λσ2

)
· E

{
exp

(
λ

t−1∑
i=1

ϵ2i

)}

. . . ≤ exp

(
λtσ2 +

(
λtσ2

)2
1− 2λσ2

)
, (75)

where the first ineqaulity uses Eq. (74). Now, we can apply the second ineqaulity of Lemma 2.9
from (Zhang, 2023) with µ = tσ2, α = 2tσ4, β = 2σ2 and ϵ = 2σ2

√
ut to obtain

inf
λ≥0

{
−λ
(
tσ2 + 2

√
utσ4 + 2uσ2

)
+ lnE

[
exp

(
λ

t∑
i=1

ϵ2i

)]}
≤ −u. (76)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Thus, it follows that

P

(
t∑

s=1

ϵ2i ≤ tσ2 + 2
√
utσ4 + 2uσ2

)

≤ inf
λ≥0

E
[
exp

(
λ
∑t

i=1 ϵ
2
i

)]
exp

(
λ
(
tσ2 + 2

√
utσ4 + 2uσ2

))
= inf

λ≥0
exp

(
−λ
(
tσ2 + 2

√
utσ4 + 2uσ2

)
+ lnE

[
exp

(
λ

t∑
i=1

ϵ2i

)])
≤ e−u, (77)

where the first inequality applies Markov’s Inequality, and the second inequality uses Eq. (76) and
the monotonicity of the exponential function. Taking u = ln(1/δ) for δ > 0, we obtain that with
probability at least 1− δ

t∑
s=1

ϵ2i ≤ tσ2 + 2
√
t ln(1/δ)σ4 + 2 ln(1/δ)σ2 (78)

≤ 2tσ2 + 3σ2 ln(1/δ), (79)

where the second inequality is deduced since 2
√
t ln(1/δ)σ4 ≤ tσ2 + ln(1/δ)σ2.

Lemma 5. Let {Xi}ni=1 be independent zero-mean sub-Gaussian random variables that satisfies

lnEXi
[exp (λXi)] ≤

λ2bi
2
, (80)

then for λ < 0.5bi, we have

lnEXi

[
exp

(
λX2

i

)]
≤ −1

2
ln (1− 2λbi) . (81)

Let Z =
∑n

i=1X
2
i , then

Pr

Z ≥ n∑
i=1

bi + 2

√√√√t

n∑
i=1

b2i + 2t
(
max

i
bi

) ≤ e−t, (82)

and

Pr

Z ≤ n∑
i=1

bi − 2

√√√√t

n∑
i=1

b2i

 ≤ e−t. (83)

Proof. Let ξ ∼ N(0, 1) which is independent of Xi. Then for all λbi < 0.5, we have

ΛX2
i
(λ) = lnEXi

[
exp

(
λX2

i

)]
= lnEXi

[
Eξ

[
exp

(√
2λξXi

)]]
= lnEξ

[
EXi

[
exp

(√
2λξXi

)]]
≤ lnEξ

[
exp

(
λξ2bi

)]
= −1

2
ln (1− 2λbi) , (84)

where the inequality used the sub-Gaussian assumption. The second and the last equalities can be
obtained using Gaussian integration. This proves the first bound of the lemma.
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For λ ≥ 0, we obtain
ΛX2

i
(λ) ≤ −0.5 ln (1− 2λbi)

= 0.5

∞∑
k=1

(2λbi)
k

k

≤ λbi + (λbi)
2
∑
k≥0

(2λbi)
k

= λbi +
(λbi)

2

1− 2λbi
. (85)

The first probability inequality of the lemma follows from Theorem 2.10 with µ =
n−1

∑n
i=1 bi, α = (2/n)

∑n
i=1 b

2
i and β = 2maxi bi.

If λ ≤ 0, then
ΛX2

i
(λ) ≤ −0.5 ln (1− 2λbi) ≤ λbi + λ2b2i . (86)

The second probability inequality of the theorem follows from the sub-Gaussian tail inequality of
Theorem 2.12 with µ = n−1

∑n
i=1 bi and b = (2/n)

∑n
i=1 b

2
i .

From Lemma 5, we can obtain the following expressions for χ2
n tail bound by taking bi = 1. With

probability at least 1− δ:

Z ≤ n+ 2
√
n ln(1/δ) + 2 ln(1/δ). (87)

and with probability at least 1− δ :

Z ≥ n− 2
√
n ln(1/δ). (88)

Definition 3. Given a random variable X , we may define its logarithmic moment generating func-
tion as

ΛX(λ) = lnE
[
eλX

]
. (89)

Moreover, given z ∈ R, the rate function IX(z) is defined as

IX(z) =


supλ>0 [λz − ΛX(λ)] z > µ

0 z = µ

supλ<0 [λz − ΛX(λ)] z < µ

(90)

where µ = E[X].

The above definition can be used to obtain exponential tail bounds for sums of independent variables
as follows.
Lemma 6. For any n and ϵ > 0 :

1

n
ln Pr

(
X̄n ≥ µ+ ϵ

)
≤ −IX1(µ+ ϵ) = inf

λ>0

[
−λ(µ+ ϵ) + lnEeλX1

]
(91)

1

n
ln Pr

(
X̄n ≤ µ− ϵ

)
≤ −IX1

(µ− ϵ) = inf
λ<0

[
−λ(µ− ϵ) + lnEeλX1

]
(92)

Proof. We choose h(z) = eλnz in Theorem 2.2 with S =
{
X̄n − µ ≥ ϵ

}
. For λ > 0, we have

Pr
(
X̄n ≥ µ+ ϵ

)
≤ EeλnX̄n

eλn(µ+ϵ)
=

Eeλ
∑n

i=1 Xi

eλn(µ+ϵ)

=
E
∏n

i=1 e
λXi

eλn(µ+ϵ)
= e−λn(µ+ϵ)

[
EeλX1

]n
. (93)

The last equation used the independence of Xi as well as they are identically distributed. Therefore
by taking logarithm, we obtain

ln Pr
(
X̄n ≥ µ+ ϵ

)
≤ n

[
−λ(µ+ ϵ) + lnEeλX1

]
. (94)

Taking inf over λ > 0 on the right hand side, we obtain the first desired bound. Similarly, we can
obtain the second bound.
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C.2 PRELIMINARY RESULTS IN RUSSO & VAN ROY (2013) AND RUSSO & VAN ROY (2014)

Proposition 1. Fix any sequence {Ft : t ∈ N}, whereFt ⊂ F is measurable with respect to σ (Ht).
Then for any T ∈ N, with probability 1,

Reg
(
T, πF1:∞

)
≤

T∑
t=1

[wFt (At) + C1 (fθ /∈ Ft)] (95)

E
[
Reg

(
T, πTS

)]
≤ E

[
T∑

t=1

[wFt
(At) + C1 (fθ /∈ Ft)]

]
. (96)

Proof. To reduce notation, define the upper and lower bounds Ut(a) = sup {f(a) : f ∈ Ft} and
Lt(a) = inf {f(a) : f ∈ Ft}. Whenever fθ ∈ Ft, the bounds Lt(a) ≤ fθ(a) ≤ Ut(a) hold for all
actions. This implies

fθ (A
∗
t )− fθ (At) ≤ Ut (A

∗
t )− Lt (At) + C1 (fθ /∈ Ft)

= wFt
(At) + C1 (fθ /∈ Ft) + [Ut (A

∗
t )− Ut (At)] . (97)

Eq. (95) follows almost immediately, since the policy πF1:∞ chooses an action At that maximizes
Ut(a). This implies Ut (At) ≥ Ut (A

∗
t ) by definition, and the last term in Eq. (97) is negative. The

result Eq. (95) follows by summing over t.

Now consider Eq. (96). Summing equation Eq. (97) over t shows,

Reg
(
T, πTS

)
≤

T∑
t=1

[wFt
(At) + C1 (fθ /∈ Ft)] +MT , (98)

where MT :=
∑T

t=1 [Ut (A
∗
t )− Ut (At)]. Now, by the definition of Thompson sampling

P (At ∈ · | Ht) = P (A∗
t ∈ · | Ht). That is At and A∗

t are identically distributed under the posterior.
In addition, since the confidence set Ft is σ (Ht)-measurable, so is the induced upper confidence
bound Ut(·). This implies E [Ut (At) | Ht] = E [Ut (A

∗
t ) | Ht], and therefore that E [MT ] = 0.

C.2.1 PRELIMINARIES: MARTINGALE EXPONENTIAL INEQUALITIES

Consider random variables (Zn | n ∈ N) adapted to the filtration (Hn : n = 0, 1, . . .). Assume
E [exp {λZi}] is finite for all λ. Define the conditional mean µi = E [Zi | Hi−1]. We de-
fine the conditional cumulant generating function of the centered random variable [Zi − µi] by
ψi(λ) = logE [exp (λ [Zi − µi]) | Hi−1]. Let

Mn(λ) = exp

{
n∑

i=1

λ [Zi − µi]− ψi(λ)

}
. (99)

Lemma 7. (Mn(λ) | n ∈ N) is a Martinagale, and E [Mn(λ)] = 1.

Proof. By definition

E [M1(λ) | H0]

= E [exp {λ [Z1 − µ1]− ψ1(λ) | H0}]
= E [exp {λ [Z1 − µ1]} | H0] / exp {ψ1(λ)}
= 1. (100)
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Then, for any n ≥ 2,

E [Mn(λ) | Hn−1]

= E

[
exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
exp {λ [Zn − µn]− ψn(λ)} | Hn−1

]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
E [exp {λ [Zn − µn]− ψn(λ)} | Hn−1]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi(λ)

}
=Mn−1(λ). (101)

Lemma 8. For all x ≥ 0 and λ ≥ 0,P (
∑n

1 λZi ≤ x+
∑n

1 [λµi + ψi(λ)] ,∀n ∈ N) ≥ 1− e−x.

Proof. For any λ,Mn(λ) is a martingale with E [Mn(λ)] = 1. Therefore, for any stopping time τ ,
E [Mτ∧n(λ)] = 1. For arbitrary x ≥ 0, define τx = inf {n ≥ 0 |Mn(λ) ≥ x} and note that τx is a
stopping time corresponding to the first time Mn crosses the boundary at x. Then, E [Mτx∧n(λ)] =
1 and by Markov’s inequality:

xP (Mτx∧n(λ) ≥ x) ≤ EMτx∧n(λ) = 1. (102)

We note that the event {Mτx∧n(λ) ≥ x} =
⋃n

k=1 {Mk(λ) ≥ x}. So we have shown that for all
x ≥ 0 and n ≥ 1,

P

(
n⋃

k=1

{Mk(λ) ≥ x}

)
≤ 1

x
. (103)

Taking the limit as n → ∞, and applying the monotone convergence theorem shows
P (
⋃∞

k=1 {Mk(λ) ≥ x}) ≤ 1
x , or, P (

⋃∞
k=1 {Mk(λ) ≥ ex}) ≤ e−x. This then shows, using the

definition of Mk(λ), that

P

( ∞⋃
n=1

{
n∑

i=1

λ [Zi − µi]− ψi(λ) ≥ x

})
≤ e−x. (104)

C.2.2 PROOF OF LEMMA 9

Lemma 9. For any δ > 0 and f : A 7→ R,

P
(
L2,t(f) ≥ L2,t (fθ) +

1

2
∥f − fθ∥22,Et

− 4η2 log(1/δ),∀t ∈ N
∣∣∣∣ θ) ≥ 1− δ. (105)

We will transform our problem in order to apply the general exponential martingale result shown
above. Since we work conditionally on θ, to reduce notation we denote the conditional probability
and expectation operators Pθ(·) = P(· | θ) and Eθ[·] = E[· | θ]. We set Ht−1 to be the σ-
algebra generated by (Ht, At) and setH0 = σ(∅,Ω). By previous assumptions, ϵt := Rt − fθ (At)

satisfies Eθ [ϵt | Ht−1] = 0 and Eθ [exp {λϵt} | Ht−1] ≤ exp
{

λ2η2

2

}
a.s. for all λ. Define Zt =

(fθ (At)−Rt)
2 − (f (At)−Rt)

2.

Proof. By definition
∑T

1 Zt = L2,T+1 (fθ) − L2,T+1(f). Some calculation shows that Zt =

− (f (At)− fθ (At))
2
+ 2 (f (At)− fθ (At)) ϵt. Therefore, the conditional mean and conditional
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cumulant generating function satisfy:

µt = Eθ [Zt | Ht−1] = − (f (At)− fθ (At))
2 (106)

ψt(λ) = logEθ [exp (λ [Zt − µt]) | Ht−1]

= logEθ [exp (2λ (f (At)− fθ (At)) ϵt) | Ht−1] ≤
(2λ [f (At)− fθ (At)])

2
η2

2
. (107)

Applying Lemma 8 shows that for all x ≥ 0, λ ≥ 0,

Pθ

(
t∑

k=1

λZk ≤ x− λ
t∑

k=1

(f (Ak)− fθ (Ak))
2
+
λ2

2
(2f (Ak)− 2fθ (Ak))

2
η2,∀t ∈ N

)
≥ 1− e−x. (108)

Rearranging terms, we have

Pθ

(
t∑

k=1

Zk ≤
x

λ
+

t∑
k=1

(f (Ak)− fθ (Ak))
2 (

2λη2 − 1
)
,∀t ∈ N

)
≥ 1− e−x. (109)

Choosing λ = 1
4η2 , x = log 1

δ , and using the definition of
∑t

1 Zk implies

Pθ

(
L2,t(f) ≥ L2,t (fθ) +

1

2
∥f − fθ∥22,Et

− 4η2 log(1/δ),∀t ∈ N
)
≥ 1− δ. (110)

C.2.3 LEAST SQUARES BOUND - PROOF OF PROPOSITION 2

Proposition 2. For all δ > 0 and α > 0, if Ft =

{
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
β∗
t (F , δ, α)

}
for

all t ∈ N, then

Pθ

(
fθ ∈

∞⋂
t=1

Ft

)
≥ 1− 2δ. (111)

Proof. Let Fα ⊂ F be an α-cover of F in the sup-norm in the sense that for any f ∈ F there is an
fα ∈ Fα such that ∥fα − f∥∞ ≤ ϵ. By a union bound, conditional on θ, with probability at least
1− δ,

L2,t (f
α)− L2,t (fθ) ≥

1

2
∥fα − fθ∥2,Et

− 4η2 log (|Fα| /δ) ,∀t ∈ N, f ∈ Fα. (112)

Therefore, with probability at least 1− δ, for all t ∈ N and f ∈ F , we have

L2,t(f)− L2,t (fθ) ≥
1

2
∥f − fθ∥22,Et

− 4η2 log (|Fα| /δ)

+ min
fα∈Fα

{
1

2
∥fα − fθ∥22,Et

− 1

2
∥f − fθ∥22,Et

+ L2,t(f)− L2,t (f
α)

}
︸ ︷︷ ︸

Discretization Eror

.

(113)
Lemma 10, which we establish in the next section, asserts that with probability at least 1 − δ, the
discretization error is bounded for all t by αηt where ηt := t

[
8C +

√
8η2 ln (4t2/δ)

]
. Since the

least squares estimate f̂LS
t has lower squared error than fθ by definition, we find with probability at

least 1− 2δ,
1

2

∥∥∥f̂LSt − fθ
∥∥∥2
2,Et

≤ 4η2 log (|Fα| /δ) + αηt. (114)

Taking the infimum over the size of α covers implies:∥∥∥f̂LS
t − fθ

∥∥∥
2,Et

≤
√

8η2 log (N (F , α, ∥ · ∥∞) /δ) + 2αηt
def
=
√
β∗
t (F , δ, α). (115)
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C.2.4 DISCRETIZATION ERROR

Lemma 10. If fα satisfies ∥f − fα∥∞ ≤ α, then, conditional on θ, with probability at least 1− δ,∣∣∣∣12 ∥fα − fθ∥22,Et
− 1

2
∥f − fθ∥22,Et

+ L2,t(f)− L2,t (f
α)

∣∣∣∣
≤ αt

[
8C +

√
8η2 ln (4t2/δ)

]
,∀t ∈ N. (116)

Proof. Since any two functions in f, fα ∈ F satisfy ∥f − fα∥∞ ≤ C, it is enough to consider
α ≤ C. We find∣∣∣(fα)2 (a)− (f)2(a)

∣∣∣ ≤ max
−α≤y≤α

∣∣(f(a) + y)2 − f(a)2
∣∣ = 2f(a)α+ α2 ≤ 2Cα+ α2, (117)

which implies ∣∣∣(fα(a)− fθ(a))2 − (f(a)− fθ(a))2
∣∣∣

=
∣∣[(fα) (a)2 − f(a)2]+ 2fθ(a) (f(a)− fα(a))

∣∣
≤ 4Cα+ α2, (118)

and ∣∣∣(Rt − f(a))2 − (Rt − fα(a))2
∣∣∣

=
∣∣2Rt (f

α(a)− f(a)) + f(a)2 − fα(a)2
∣∣

≤ 2α |Rt|+ 2Cα+ α2. (119)

Summing over t, we find that the left hand side of Eq. (116) is bounded by

t−1∑
k=1

(
1

2

[
4Cα+ α2

]
+
[
2α |Rk|+ 2Cα+ α2

])
≤ α

t−1∑
k=1

(6C + 2 |Rk|) . (120)

Because ϵk is sub-Gaussian, Pθ

(
|ϵk| >

√
2η2 ln(2/δ)

)
≤ δ. By a union bound,

Pθ

(
∃k, s.t., |ϵk| >

√
2η2 ln (4t2/δ)

)
≤ δ

2

∑∞
k=1

1
k2 ≤ δ. Since |Rk| ≤ C + |ϵk|, this shows

that with probability at least 1 − δ, the discretization error is bounded for all t by αηt, where
ηt ≜ t

[
8C + 2

√
2η2 ln (4t2/δ)

]
.

C.2.5 BOUNDING THE SUM OF WIDTHS

Proposition 3. If (βt ≥ 0 | t ∈ N) is a nondecreasing sequence and Ft :={
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
βt

}
then

T∑
t=1

1 (wFt
(At) > ϵ) ≤

(
4βT
ϵ2

+ 1

)
dimE(F , ϵ), (121)

for all T ∈ N and ϵ > 0.

Proof. (i) We begin by showing that if wt (At) > ϵ then At is ϵ-dependent on fewer than 4βT /ϵ
2

disjoint subsequences of (A1, .., At−1), for T > t.

To see this, note that if wFt (At) > ϵ there are f, f ∈ Ft such that f̄ (At) − f (At) > ϵ. By
definition, since f̄ (At) − f (At) > ϵ, if At is ϵ-dependent on a subsequence (Ai1 , . . . , Aik) of

(A1, .., At−1), then
∑k

j=1

(
f̄
(
Aij

)
− f

(
Āij

))2
> ϵ2. It follows that, if At is ϵ-dependent on K
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disjoint subsequences of (A1, .., At−1), then ∥f̄ − f∥22,Et
> Kϵ2. By the triangle inequality, we

have

∥f̄ − f∥2,Et ≤
∥∥∥f̄ − f̂LS

t

∥∥∥
2,Et

+
∥∥∥f − f̂LS

t

∥∥∥
2,Et

≤ 2
√
βt ≤ 2

√
βT , (122)

and it follows that K < 4βT /ϵ
2.

(ii) Next, we show that in any action sequence (a1, .., aτ ), there is some element aj that is ϵ-
dependent on at least τ/d− 1 disjoint subsequences of (a1, .., aj−1), where d ≜ dimE(F , ϵ).
To show this, for an integer K satisfying Kd + 1 ≤ τ ≤ Kd + d, we will construct K disjoint
subsequences B1, . . . , BK . First let Bi = (ai) for i = 1, ..,K. If aK+1 is ϵ-dependent on each
subsequence B1, .., BK , our claim is established. Otherwise, select a subsequence Bi such that
aK+1 is ϵ-independent and append aK+1 to Bi. Repeat this process for elements with indices
j > K+1 until aj is ϵ-dependent on each subsequence or j = τ . In the latter scenario

∑
|Bi| ≥ Kd,

and since each element of a subsequence Bi is ϵ-independent of its predecessors, |Bi| = d. In this
case, aτ must be ϵ-dependent on each subsequence, by the definition of dimE(F , ϵ).
Now consider taking (a1, . . . , aτ ) to be the subsequence (At1 , . . . , Atτ ) of (A1, . . . , AT ) consisting
of elements At for which wFt

(At) > ϵ. As we have established, each Atj is ϵ-dependent on fewer
than 4βT /ϵ

2 disjoint subsequences of
(
A1, .., Atj−1

)
. It follows that each aj is ϵ-dependent on

fewer than 4βT /ϵ
2 disjoint subsequences of (a1, .., aj−1). Combining this with the fact we have

established that there is some aj that is ϵ-dependent on at least τ/d − 1 disjoint subsequences of
(a1, .., aj−1), we have τ/d−1 ≤ 4βT /ϵ

2. It follows that τ ≤
(
4βT /ϵ

2 + 1
)
d, which is our desired

result.

Lemma 11. If (βt ≥ 0 | t ∈ N) is a nondecreasing sequence and Ft :={
f ∈ F :

∥∥∥f − f̂LS
t

∥∥∥
2,Et

≤
√
βt

}
then with probability 1,

T∑
t=1

wFt
(At) ≤

1

T
+min

{
dimE

(
F , αF

T

)
, T
}
C + 4

√
dimE

(
F , αF

T

)
βTT , (123)

for all T ∈ N.

Proof. To reduce notation, write d = dimE

(
F , αF

T

)
and wt = wt (At). Reorder the sequence

(w1, . . . , wT )→ (wi1 , . . . , wiT ) where wi1 ≥ wi2 ≥ . . . ≥ wiT . We have

T∑
t=1

wFt
(At) =

T∑
t=1

wit

=

T∑
t=1

wit1
{
wit ≤ αF

T

}
+

T∑
t=1

wit1
{
wit > αF

T

}
≤ 1

T
+

T∑
t=1

wit1
{
wit > αF

T

}
. (124)

The final step in the above inequality uses that either αF
T = T−2 and

∑T
t=1 α

F
T = T−1 or αF

T is set
below the smallest possible width and hence 1

{
wit ≤ αF

T

}
never occurs.

Now, we know wit ≤ C. In addition, wit > ϵ⇐⇒
∑T

k=1 1 (wFk
(Ak) > ϵ) ≥ t. By Proposition 3,

this can only occur if t <
(

4βT

ϵ2 + 1
)
dimE(F , ϵ). For ϵ ≥ αF

T ,dimE(F , ϵ) ≤ dimE

(
F , αF

T

)
= d,

since dimE (F , ϵ′) is nonincreasing in ϵ′. Therefore, when wit > ϵ ≥ αF
T , t ≤

(
4βT

ϵ2 + 1
)
d, which
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implies ϵ ≤
√

4βT d
t−d . This shows that if wit > αF

T , then wit ≤ min
{
C,
√

4βT d
t−d

}
. Therefore,

T∑
t=1

wit1
{
wit > αF

T

}
≤ dC +

T∑
t=d+1

√
4dβT
t− d

≤ dC + 2
√
dβT

∫ T

t=0

1√
t
dt

= dC + 4
√
dβTT . (125)

Lemma 12. (Optimism drives exploration, analog of Lemma 2). If the estimates V̂f and Ẽ (ft, πt, h)
in Line 3 and 8 of Algorithm 3 always satisfy∣∣∣V̂f − Vf ∣∣∣ ≤ ϵ′/8, ∣∣∣Ẽ (ft, πt, h)− E (ft, πt, h)∣∣∣ ≤ ϵ′

8H
, (126)

throughout the execution of the algorithm (recall that ϵ′ is defined on Line 1), and f⋆θ is never
eliminated, then in any iteration t, either the algorithm does not terminate and

E (ft, πt, ht) ≥
ϵ′

2H
(127)

or the algorithm terminates and the output policy πt satisfies V πt ≥ V ⋆
F,θ − ϵ′ −Hθ.

Then, we bound the two terms above respectively. For the first term, we deduce that

p1 ≤
∑

(k,h):σk,h=1

Eπk
[max (1, βk,h) ·min (1, bk,h (sk,h, ak,h))]

≤

√√√√ K∑
k=1

H∑
h=1

max
(
1, (βk,h)

2
)
· Eπk

√ ∑
(k,h):σk,h=1

min
(
1, (bk,h (sk,h, ak,h))

2
)

≤
√
KH(1 + β)

√√√√ H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2
, (128)

where the first inequality is due to the fact that min (a1a2, b1b2) ≤ max (a1, b1) ·min (a2, b2), the
second inequality is obtained by using Cauchy-Schwarz inequality, and the last inequality utilizes
the definition of Dλ,σh,Fk,h

(Zk,h) in (13) and the selection of confidence radius: βk,h = β.

Then, for σk,h > 1, according to the definition of σk,h in (14), we have (σk,h)
2

= 1/α ·
bk,h (sk,h, ak,h). Thus, we can bound the second term as

p2 ≤
∑

(k,h):σk,h>1

Eπk

[
min

(
1, βk,h (σk,h)

2 · bk,h (sk,h, ak,h) / (σk,h)2
)]

≤
∑

(k,h):σk,h>1

Eπk

[
min

(
1, βk,h/α · (bk,h (sk,h, ak,h))2 / (σk,h)2

)]

≤ β/α ·
K∑

k=1

H∑
h=1

Eπk

[
min

(
1, (bk,h (sk,h, ak,h))

2
/ (σk,h)

2
)]

≤ β/α ·
H∑

h=1

K∑
k=1

Eπk

[(
Dλ,σh,Fk,h

(Zk,h)
)2]

≤ β/α ·
H∑

h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2
, (129)
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where the Dλ,σh,Fk,h
(Zk,h) is formulated in Definition 13 . Combining these results, we get

Reg(K) ≤ 2Hζ +
√
KH(1 + β)

√√√√ H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

+ β/α ·
H∑

h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

= Õ

((
H +

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2)

ζ

+

√√√√KH ln (NK(γ))

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

+ αζ

√√√√KH

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

+
√
ln (NK(γ))

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2
/α

)

= Õ


√√√√KH ln (NK(γ))

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

+ ζ

H∑
h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2)

, (130)

where the first inequality is deduced by taking the bounds of terms p1 and p2 back into Eq. (71),
the first equality uses the choice of β = O

(
αζ +

√
ln (H ln (NK(γ)) /δ) , and the last equation is

obtained by setting α =
√
ln (NK(γ))/ζ.

Then, it suffices to replace weighted eluder dimension supZK,h

∑K
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2

with

the eluder dimension dimE(F , ϵ) in Definition 2.7. Because F is factorized as
∏H

h=1 Fh, we get

dimE(F , ϵ) =
H∑

h=1

dimE (Fh, ϵ) . (131)

By invoking Lemma 5.1 for each function space Fh, we obtain

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2 ≤ (√8c0 + 3

)
dimE (Fh, λ/K) log(K/λ) lnK, (132)

which indicates that
H∑

h=1

sup
ZK,h

K∑
k=1

(
Dλ,σh,Fk,h

(Zk,h)
)2 ≤ (√8c0 + 3

)
dimE(F , λ/K) log(K/λ) lnK. (133)

D EXISTING IDEA: IMPORTANCE SAMPLING

For completeness, we repeat the discussion in existing importance sampling Wang et al. (2020).
Assumption 1. For any ε > 0, the following holds:

1. there exists an ε-cover C(F , ε) ⊆ F with size |C(F , ε)| ≤ N (F , ε), such that for any f ∈ F ,
there exists f ′ ∈ C(F , ε) with ∥f − f ′∥∞ ≤ ε;
2. there exists an ε-cover C(S × A, ε) with size |C(S × A, ε)| ≤ N (S × A, ε), such that for any
(s, a) ∈ S ×A, there exists (s′, a′) ∈ C(S ×A, ε) with maxf∈F |f(s, a)− f (s′, a′)| ≤ ε.
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Algorithm 2 F − LSVI(δ)

1: Input: failure probability δ ∈ (0, 1) and number of episodes K
2: for episode k = 1 : K do
3: Receive initial state sk,1 ∼ µ
4: Qk,H+1(·, ·)← 0 and Vk,H+1(·)← 0
5: Zk ← {(st,h′ , at,h′)}(t,h′)∈[k−1]×[H]

6: for h = H : 1 do
7: Dk,h ← {(st,h′ , at,h′ , rt,h′ + Vk,H+1 (st,h′+1, a))}(t,h′)∈[k−1]×[H]

8: fk,h ← argminf∈F ∥f∥2Dk,h

9: bk,h(·, ·)← Bonus (F , fk,h,Zk, δ) (Algorithm 3)
10: Qk,h(·, ·)← min {fk,h(·, ·) + bk,h(·, ·), H} and Vk,h(·) = maxa∈AQk,h(·, a)
11: πk,h(·)← argmaxa∈AQk,h(·, a)
12: for h=1:H do
13: Take action ak,h ← πk,h (sk,h) and observe sk,h+1 ∼ P (· | sk,h, ak,h) and rk,h =

r (sk,h, ak,h)
14: end for
15: end for
16: end for

Assumption 1 requires both the function class F and the state-action pairs S × A have bounded
covering numbers. Since our regret bound depends logarithmically on N (F , ·) and N (S × A, ·), it
is acceptable for the covers to have exponential size. In particular, when S andA are finite, it is clear
that logN (F , ε) = Õ(|S||A|) and logN (S × A, ε) = log(|S||A|). For the case of d-dimensional
linear functions and generalized linear functions, logN (F , ε) = Õ(d) and logN (S×A, ε) = Õ(d).
For quadratic functions, logN (F , ε) = Õ

(
d2
)

and logN (S ×A, ε) = Õ(d).

D.1 ALGORITHM OVERVIEW

Stable Upper-Confidence Bonus Function. With more collected data, the least squares predictor is
expected to return a better approximate the true Q-function. To encourage exploration, we care-
fully design a bonus function bk,h(·, ·) which guarantees that, with high probability, Qk,h+1(s, a)
is an overestimate of the one-step backup. The bonus function bk,h(·, ·) is guaranteed to tightly
characterize the estimation error of the one-step backup

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′) , (134)

where

Vk,h+1(·) = max
a∈A

Qk,h+1(·, a) (135)

is the value function of the next step. The bonus function bk,h(·, ·) is designed by carefully priori-
tizing important data and hence is stable even when the replay buffer has large cardinality.

D.1.1 STABLE UCB VIA IMPORTANCE SAMPLING

To define the confidence region Fk,h, a natural definition would be

Fk,h =
{
f ∈ F | ∥f − fk,h∥2Zk

≤ β
}
, (136)

where β is defined so that

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,H+1 (s
′) ∈ Fk,h. (137)

with high probability, and recall that Zk = {(st,h′ , at,h′)}(t,h′)∈[k−1]×[H] is the set of state-action
pairs defined in Line 5. However, as one can observe, the complexity of such a bonus function
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Algorithm 3 Sensitivity-Sampling (F ,Z, λ, ε, δ)
1: Input: function class F , set of state-action pairs Z ⊆ S ×A, accuracy parameters λ, ε > 0 and

failure probability δ ∈ (0, 1)
2: Initialize Z ′ ← {}
3: For each z ∈ Z , let pz to be smallest real number such that 1/pz is an integer and

pz ≥ min
{
1, sensitivityZ,F,λ(z) · 72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2

}
. (138)

4: For each z ∈ Z , independently add 1/pz copies of z into Z ′ with probability pz
5: return Z ′

Algorithm 4 Bonus(F , f̄ ,Z, δ)

1: Input: function class F , reference function f̄ ∈ F , state-action pairs Z ⊆ S × A and failure
probability δ ∈ (0, 1)

2: Z ′ ← Sensitivity-Sampling(F ,Z, δ/(16T ), 1/2, δ) ▷
3: Z ′ ← {} if |Z ′| ≥ 4T/δ or the number of distinct elements in Z ′ exceeds

6912 dimE

(
F , δ/

(
16T 2

))
log
(
64H2T 2/δ

)
lnT ln(4N (F , δ/(566T ))/δ). (140)

4: Let f̂ ∈ C(F , 1/(8
√
4T/δ)) be such that ∥f̄ − f̂∥∞ ≤ 1/(8

√
4T/δ)

5: Ẑ ← {}
6: for z ∈ Z ′ do
7: Let ẑ ∈ C(S ×A, 1/(8

√
4T/δ)) be such that supf,f ′∈F |f(z)− f ′(z)| ≤ 1/(8

√
4T/δ)

8: Ẑ ← Ẑ ∪ {ẑ}
9: return ŵ(·, ·) := w(F̂ , ·, ·), where F̂ =

{
f ∈ F | ∥f − f̂∥2

Ẑ
≤ 3β(F , δ) + 2

}
and

β(F , δ) = c′H2 · log2(T/δ) · dimE

(
F , δ/T 3

)
· ln
(
N
(
F , δ/T 2

)
/δ
)
· log(N (S ×A, δ/T )) · T/δ (141)

for some absolute constants c′ > 0.
10: end for

could be extremely high as it is defined by a dataset Zk whose size can be as large as T = KH . A
high-complexity bonus function could potentially introduce instability issues in the algorithm. Tech-
nically, we require a stable bonus function to allow for highly concentrated estimate of the one-step
backup so that the confidence regionFk,h is accurate even for bounded β. Our strategy to ”stabilize”
the bonus function is to reduce the size of the dataset by importance sampling, so that only impor-
tant state-action pairs are kept and those unimportant ones (which potentially induce instability) are
ignored. Another benefit of reducing the size of the dataset is that it leads to superior computational
complexity when evaluating the bonus function in practice. In later part of this section, we intro-
duce an approach to estimate the importance of each state-action pair and a corresponding sampling
method based on that.

Definition 4. For a given set of state-action pairs Z ⊆ S × A and a function class F , for each
z ∈ Z , define the λ-sensitivity of (s, a) with respect to Z and F to be

sensitivityZ,F,λ(s, a) = max
f,f ′∈F
∥f−f ′∥2Z≥λ

(f(s, a)− f ′(s, a))2

∥f − f ′∥2Z
. (139)

Sensitivity measures the importance of each data point z in Z by considering the pair of functions
f, f ′ ∈ F such that z contributes the most to ∥f − f ′∥2Z .
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D.2 COMPUTATIONAL EFFICIENCY

To implement importance sampling, one needs to evaluate the width function w(F̂ , ·, ·) for a confi-
dence region F̂ of the form

F̂ =
{
f ∈ F | ∥f − f̂∥2Z ≤ β

}
, (142)

which is a constrained optimization problem. When F is the class of linear functions, there is a
closed-form formula for the width function and thus the width function can be efficiently evaluated
in this case. Simple complexity upper bound is no longer available for the class of general functions
considered in this paper. Instead, we bound the complexity of the bonus function by relying on the
fact that the subsampled dataset has bounded size. Scrutinizing the sampling algorithm, it can be
seen that the size of the subsampled dataset is upper bounded by the sum of the sensitivity of the data
points in the given dataset times the log-convering number of the function class F . To upper bound
the sum of the sensitivity of the data points in the given dataset, we rely on a novel combinatorial
argument which establishes a surprising connection between the sum of the sensitivity and the eluder
dimension of the function class F . We show that the sum of the sensitivity of data points is upper
bounded by the eluder dimension of the dataset up to logarithm factors. Hence, the complexity
of the subsampled dataset, and therefore, the complexity of the bonus function, is upper bound by
the log-covering number of S × A (the complexity of each state-action pair) times the product of
the eluder dimension of the function class and the log-covering number of the function class (the
number of data points in the subsampled dataset).

In order to show that the confidence region is approximately preserved when using the subsampled
dataset Z ′, we show that for any f, f ′ ∈ F , ∥f − f ′∥2Z′ is a good approximation to ∥f − f ′∥2Z . To
show this, we apply a union bound over all pairs of functions on the cover of F which allows us
to consider fixed f, f ′ ∈ F . For fixed f, f ′ ∈ F , note that ∥f − f ′∥2Z′ is an unbiased estimate of
∥f − f ′∥2Z , and importance sampling proportional to the sensitivity implies an upper bound on the
variance of the estimator which allows us to apply concentration bounds to prove the desired result.
We note that the sensitivity sampling framework used here is very crucial to the theoreical guarantee
of the algorithm. If one replaces sensitivity sampling with more naı̈ve sampling approaches (e.g.
uniform sampling), then the required sampling size would be much larger, which does not give any
meaningful reduction on the size of the dataset and also leads to a high complexity bonus function.

Our algorithm applies the principle of optimism in the face of uncertainty (OFU) to balance ex-
ploration and exploitation. Note that Vk,h+1 is the value function estimated at step h + 1. In our
analysis, we require the Q-function Qk,h estimated at level h to satisfy

Qk,h(·, ·) ≥ r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′) (143)

with high probability. To achieve this, we optimize the least squares objective to find a
solution fk,h ∈ F using collected data. We then show that fk,h is close to r(·, ·) +∑

s′∈S P (s′ | ·, ·)Vk,h+1 (s
′). This would follow from standard analysis if the collected samples

were independent of Vk,h+1. However, Vk,h+1 is calculated using the collected samples and thus
they are subtly dependent on each other. To tackle this issue, we notice that Vk,h+1 is computed by
using fk,h+1 and the bonus function bk,h+1, and both fk,h+1 and the bonus function bk,h+1 have
bounded complexity, thanks to the design of bonus function. Hence, we can construct a 1/T -cover
to approximate Vk,h+1. By doing so, we can now bound the fitting error of fk,h by replacing Vk,h+1

with its closest neighbor in the 1/T -cover which is independent of the dataset. By a union bound
over all functions in the 1/T -cover, it follows that with high probability,

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′) ∈

{
f ∈ F | ∥f − fk,h∥2Zk

≤ β
}

(144)

for some β that depends only on the complexity of the bonus function and the function class F .

D.3 ANALYSIS OF THE STABLE BONUS FUNCTION

Our first lemma gives an upper bound on the sum of the sensitivity in terms of the eluder dimension
of the function class F .
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Lemma 13. For a given set of state-action pairs Z ,∑
z∈Z

sensitivityZ,F,λ(z) ≤ 4 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln |Z|. (145)

Proof. For each z ∈ Z , let f, f ′ ∈ F be an arbitrary pair of functions such that ∥f − f ′∥2Z ≥ λ and

(f(z)− f ′(z))2

∥f − f ′∥2Z
(146)

is maximized, and we define L(z) = (f(z)− f ′(z))2 for such f and f ′. Note that 0 ≤ L(z) ≤
(H+1)2. Let Z =

⋃log((H+1)2|Z|/λ)−1

α=0 Zα ∪Z∞ be a dyadic decomposition with respect to L(·),
where for each 0 ≤ α < log

(
(H + 1)2|Z|/λ

)
, define

Zα =
{
z ∈ Z | L(z) ∈

(
(H + 1)2 · 2−α−1, (H + 1)2 · 2−α

]}
(147)

and

Z∞ = {z ∈ Z | L(z) ≤ λ/ |Z|} (148)

Clearly, for any z ∈ Z∞, sensitivityZ,F,λ(z) ≤ 1/|Z| and thus∑
z∈Z∞

sensitivityZ,F,λ(z) ≤ 1. (149)

Now we bound
∑

z∈Zα sensitivityZ,F,λ(z) for each 0 ≤ α < log
(
(H + 1)2|Z|/λ

)
separately.

For each α, let

Nα = |Zα| / dimE

(
F , (H + 1)2 · 2−α−1

)
, (150)

and we decompose Zα into Nα + 1 disjoint subsets, i.e., Zα =
⋃Nα+1

j=1 Zα
j , by using the following

procedure. Let Zα =
{
z1, z2, . . . , z|Zα|

}
and we consider each zi sequentially. Initially Zα

j = {}
for all j. Then, for each zi, we find the largest 1 ≤ j ≤ Nα such that zi is (H + 1)2 · 2−α−1-
independent of Zα

j with respect to F . We set j = Nα + 1 if such j does not exist, and use
j (zi) ∈ [Nα + 1] to denote the choice of j for zi. By the design of the algorithm, for each zi, it is
clear that zi is dependent on each of Zα

1 ,Zα
2 , . . . ,Zα

j(zi)−1

Now we show that for each zi ∈ Zα,

sensitivityZ,F,λ (zi) ≤ 2/j (zi) . (151)

For any zi ∈ Zα, we use f, f ′ ∈ F to denote the pair of functions in F such that ∥f − f ′∥2Z ≥ λ
and

(f (zi)− f ′ (zi))2

∥f − f ′∥2Z
(152)

is maximized. Since zi ∈ Zα, we must have (f (zi)− f ′ (zi))2 > (H + 1)2 · 2−α−1. Since zi is
dependent on each of Zα

1 ,Zα
2 , . . . ,Zα

j(zi)−1, for each 1 ≤ k < j (zi), we have

∥f − f ′∥Zα
k
≥ (H + 1)2 · 2−α−1 (153)

which implies

sensitivity Z,F,λ (zi) =
(f (zi)− f ′ (zi))2

∥f − f ′∥2Z
≤ (H + 1)2 · 2−α

∥f − f ′∥2Z

≤ (H + 1)2 · 2−α∑j(zi)−1
k=1 ∥f − f ′∥Zα

k
+ (f (zi)− f ′ (zi))2

≤ 2/j (zi) . (154)
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Moreover, by the definition of (H + 1)2 · 2−α−1-independence, we have
∣∣Zα

j

∣∣ ≤
dimE

(
F , (H + 1)2 . 2−α−1 ) for all 1 ≤ j ≤ Nα. Therefore,∑

z∈Zα

sensitivityZ,F,λ(z) ≤
∑

1≤j≤Nα

∣∣Zα
j

∣∣ · 2/j + ∑
z∈Zα

Nα+1

2/Nα

≤2 dimE

(
F , (H + 1)2 · 2−α−1

)
ln (Nα) + |Zα| ·

2 dimE

(
F , (H + 1)2 · 2−α−1

)
|Zα|

≤dimE

(
F , (H + 1)2 · 2−α−1

)
ln(|Z|). (155)

By the monotonicity of eluder dimension, it follows that∑
z∈Z

sensitivityZ,F,λ(z)

≤
log((H+1)2|Z|/λ)−1∑

α=0

∑
z∈Zα

sensitivityZ,F,λ(z) +
∑

z∈Z∞

sensitivityZ,F,λ(z)

≤3 log
(
(H + 1)2|Z|/λ

)
dimE(F , λ/|Z|) ln(|Z|) + 1

≤4 log
(
(H + 1)2|Z|/λ

)
dimE(F , λ/|Z|) ln(|Z|). (156)

Using Lemma 13, we can prove an upper bound on the number of distinct elements in Z ′ returned
by the sampling algorithm (Algorithm 23).
Lemma 14. With probability at least 1 − δ/4, the number of distinct elements in Z ′ returned by
Algorithm 2 is at most

1728 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln(|Z|) ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2. (157)

Proof. Note that

pz ≤ min
{
1, 2 · sensitivityZ,F,λ(z) · 72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2

}
, (158)

since for any real number x < 1, there always exists x̂ ∈ [x, 2x] such that 1/x̂ is an integer. Let Xz

be a random variable defined as

Xz =

{
1 z ∈ Z ′

0 z /∈ Z ′ . (159)

Clearly, the number of distinct elements in Z ′ is upper bounded by
∑

z∈Z Xz and E [Xz] = pz . By
Lemma 13,∑

z∈Z
E [Xz]

≤ 576 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln(|Z|) ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2.

(160)

By Chernoff bound, with probability at least 1− δ/4, we have∑
z∈Z

Xz

≥ 1728 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln(|Z|) ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2.

(161)

Our second lemma upper bounds the number of elements in Z ′ returned by Algorithm 2.
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Lemma 15. With probability at least 1− δ/4, |Z ′| ≤ 4|Z|/δ.

Proof. Let Xz be the random variable which is defined as

Xz =

{
1/pz z is added into Z ′

0 otherwise
. (162)

Note that |Z ′| =
∑

z∈Z Xz and E [Xz] = 1. By Markov inequality, with probability 1 − δ/4,
|Z ′| ≤ 4|Z|/δ.

Our third lemma shows that for the given set of state-action pairs Z and function class F , Algorithm
2 returns a set of state-action pairsZ ′ so that ∥f − f ′∥2Z is approximately preserved for all f, f ′ ∈ F .
Lemma 16. With probability at least 1− δ/2, for any f, f ′ ∈ F ,

(1− ε) ∥f − f ′∥2Z − 2λ ≤ ∥f − f ′∥2Z′ ≤ (1 + ε) ∥f − f ′∥2Z + 8|Z|λ/δ. (163)

Proof. In our proof, we separately consider two cases: ∥f − f ′∥2Z < 2λ and ∥f − f ′∥2Z ≥ 2λ.

Case I: ∥f − f ′∥2Z < 2λ. Consider f, f ′ ∈ F with ∥f − f ′∥2Z < 2λ. Conditioned on the
event defined in Lemma 15 which holds with probability at least 1 − δ/4, we have ∥f − f ′∥2Z′ ≤
|Z ′| · ∥f − f ′∥2Z ≤ 8|Z|λ/δ. Moreover, we always have ∥f − f ′∥Z′ ≥ 0. In summary, we have

∥f − f ′∥2Z − 2λ ≤ ∥f − f ′∥2Z′ ≤ ∥f − f ′∥2Z + 8|Z|λ/δ. (164)

Case II: ∥f − f ′∥2Z ≥ 2λ. We first show that for any fixed f, f ′ ∈ F with ∥f − f ′∥2Z ≥ λ, with
probability at least 1− δ/(4N (F , ε/72 ·

√
λδ/(|Z|))), we have

(1− ε/4) ∥f − f ′∥2Z ≤ ∥f − f
′∥2Z′ ≤ (1 + ε/4) ∥f − f ′∥2Z . (165)

To prove this, for each z ∈ Z , define

Xz =

{
1
pz

(f(z)− f ′(z))2 z is added into Z ′ for 1/pz times
0 otherwise

. (166)

Clearly, ∥f − f ′∥Z′ =
∑

z∈Z Xz and E [Xz] = (f(z)− f ′(z))2. Moreover, since ∥f − f ′∥2Z ≥ λ,
by (3) and Definition 3, we have

max
z∈Z

Xz ≤ ∥f − f ′∥
2
Z · ε

2/(72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ). (167)

Moreover, E
[
X2

z

]
≤ (f(z)− f ′(z))4 /pz . Therefore, by Hölder’s inequality,∑

z∈Z
Var [Xz] ≤

∑
z∈Z

E
[
X2

z

]
≤
∑
z∈Z

(f(z)− f ′(z))2 ·max
z∈Z

(f(z)− f ′(z))2 /pz

≤∥f − f ′∥4Z · ε
2/(72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ). (168)

Therefore, by Bernstein inequality,

Pr
[∣∣∣∥f − f ′∥2Z − ∥f − f ′∥2Z′

∣∣∣ ≥ ε/4 · ∥f − f ′∥2Z]
=Pr

[∣∣∣∣∣∑
z∈Z

E [Xz]−
∑
z∈Z

Xz

∣∣∣∣∣ ≥ ε/4 · ∥f − f ′∥2Z
]

≤2 exp

(
−

ε2/16 · ∥f − f ′∥4Z
2
∑

z∈Z Var [Xz] + 2maxz∈Z Xz · ε/4 · ∥f − f ′∥2Z /3

)
≤(δ/4)/(N (F , ε/72 ·

√
λδ/(|Z|)))2. (169)
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By union bound, the above inequality implies that with probability at least 1−δ/4, for any (f, f ′) ∈
C(F, ε/72 ·

√
λδ/(|Z|))× C(F, ε/72 ·

√
λδ/(|Z|)) with ∥f − f ′∥2Z ≥ λ

(1− ε/4) ∥f − f ′∥2Z ≤ ∥f − f
′∥2Z′ ≤ (1 + ε/4) ∥f − f ′∥2Z′ . (170)

Now we condition on the event defined above and the event defined in Lemma 15. Consider f, f ′ ∈
F with ∥f − f ′∥2Z ≥ 2λ. Recall that there exists(

f̂ , f̂ ′
)
∈ C(F, ε/72 ·

√
λδ/(|Z|))× C(F, ε/72 ·

√
λδ/(|Z|)). (171)

such that ∥f − f̂∥∞ ≤
√
λ/(25|Z|) and

∥∥∥f ′ − f̂ ′∥∥∥
∞
≤
√
λ/(25|Z|). Therefore,∥∥∥f̂ − f̂ ′∥∥∥2

Z
=
∑
z∈Z

(
f̂(z)− f̂ ′(z)

)2
=
∑
z∈Z

(
f(z)− f ′(z) + (f̂(z)− f(z)) +

(
f ′(z)− f̂ ′(z)

))2
≥
(
∥f − f ′∥Z − ∥f̂ − f∥Z −

∥∥∥f ′ − f̂ ′∥∥∥
Z

)2
≥(
√
2λ− 2

√
λ/25)2 ≥ λ. (172)

Therefore, conditioned on the event defined above, we have

(1− ε/4)
∥∥∥f̂ − f̂ ′∥∥∥2

Z
≤
∥∥∥f̂ − f̂ ′∥∥∥2

Z′
≤ (1 + ε/4)

∥∥∥f̂ − f̂ ′∥∥∥2
Z′
. (173)

Conditioned on the event defined in Lemma 15 which holds with probability at least 1 − δ/4, we
have

∥f − f ′∥2Z′ ≤
(∥∥∥f̂ − f̂ ′∥∥∥

Z′
+ ∥f − f̂∥Z′ +

∥∥∥f ′ − f̂ ′∥∥∥
Z′

)2
≤
(∥∥∥f̂ − f̂ ′∥∥∥

Z′
+ 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2
≤
(
(1 + ε/6)

∥∥∥f̂ − f̂ ′∥∥∥
Z
+ 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2
≤
(
(1 + ε/6)∥f − f∥Z + 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|) + 4

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2
≤(1 + ε)∥f − f∥2Z , (174)

where the last inequality holds since ∥f − f∥Z ≥
√
λ. Similarly,

∥f − f ′∥2Z′ ≥
(∥∥∥f̂ − f̂ ′∥∥∥

Z′
− ∥f − f̂∥Z′ −

∥∥∥f ′ − f̂ ′∥∥∥
Z′

)2
≥
(∥∥∥f̂ − f̂ ′∥∥∥

Z′
− 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2
≥
(
(1− ε/6)

∥∥∥f̂ − f̂ ′∥∥∥
Z
− 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2
≥
(
(1− ε/6)∥f − f∥Z − 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|)− 2

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2
≥(1− ε)∥f − f∥2Z . (175)

Combining Lemma 14, Lemma 15, and Lemma 16 with a union bound, we have the following
proposition.
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Proposition 4. With probability at least 1 − δ, the size of Z ′ returned by Algorithm 2 satisfies
|Z ′| ≤ 4|Z|/δ, the number of distinct elements in Z is at most

1728 dimE(F , λ/|Z|) log
(
(H + 1)2|Z|/λ

)
ln(|Z|) ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2. (176)

and for any f, f ′ ∈ F ,

(1− ε) ∥f − f ′∥2Z − 2λ ≤ ∥f − f ′∥2Z′ ≤ (1 + ε) ∥f − f ′∥2Z + 8|Z|λ/δ (177)

Proposition 5. For Algorithm 3, suppose |Z| ≤ KH = T , the following holds.

1. With probability at least 1− δ/(16T ),
w(F , s, a) ≤ ŵ(s, a) ≤ w(F , s, a), (178)

where F =
{
f ∈ F | ∥f − f̄∥2Z ≤ β(F , δ)

}
, and F =

{
f ∈ F | ∥f − f̄∥2Z ≤ 9β(F , δ) + 12

}
.

2. ŵ(·, ·) ∈ W for a function setW with
log |W| ≤ 6912 dimE

(
F , δ/

(
16T 2

))
log
(
16(H + 1)2T 2/δ

)
lnT ln(4N (F , δ/(566T ))/δ)

· log(N (S ×A, 1/(8
√
4T/δ)) · 4T/δ) + log(N (F , 1/(8

√
4T/δ)))

≤ C · dimE

(
F , δ/T 3

)
· log

(
H2T 2/δ

)
· lnT · ln

(
N
(
F , δ/T 2

)
/δ
)

· log(N (S ×A, δ/T )) · T/δ), (179)
for some absolute constant C > 0 if T is sufficiently large.

Proof. For the first part, conditioned on the event defined in Proposition 4, for any f ∈ F , we have
∥f − f̄∥2Z̄/2− 1/2 ≤ ∥f − f̄∥2Z ≤ 3∥f − f̄∥2Z̄/2 + 1/2. (180)

Therefore, we have

∥f − f̂∥2Ẑ ≤
(
∥f − f̂∥Z +

√
4T/δ/(8

√
4T/δ)

)2
≤
(
∥f − f̄∥Z +

√
4T/δ/(8

√
4T/δ) +

√
4T/δ/(8

√
4T/δ)

)2
≤2∥f − f̄∥2Z

2
+ 2(

√
4T/δ/(8

√
4T/δ) +

√
4T/δ/(8

√
4T/δ))2 ≤ 3∥f − f̄∥2Z + 2, (181)

and

∥f − f̂∥2Ẑ ≥
(
∥f − f̂∥Z −

√
4T/δ/(8

√
4T/δ)

)2
≥
(
∥f − f̄∥Z −

√
4T/δ/(8

√
4T/δ)−

√
4T/δ/(8

√
4T/δ)

)2
≥∥f − f̄∥Z

2
/2− (

√
4T/δ/(8

√
4T/δ) +

√
4T/δ/(8

√
4T/δ))2 ≥ ∥f − f̄∥2Z/3− 2. (182)

Therefore, for any f ∈ F , we have ∥f − f̄∥2Z ≤ β(F , δ), which implies ∥f − f̂∥2
Ẑ
≤ 3β(F , δ) + 2

and thus f ∈ F̂ . Moreover, for any f ∈ F̂ , we have ∥f − f̂∥2
Ẑ
≤ 3β(F , δ) + 2, which implies

∥f − f̄∥2Z ≤ 9β(F , δ) + 12.

For the second part, note that ŵ(·, ·) is uniquely defined by F̂ . When |Z| ≥ 4T/δ or the number of
distinct elements in Z exceeds

6912 dimE

(
F , δ/

(
16T 2

))
log
(
16(H + 1)2T 2/δ

)
lnT ln(4N (F , δ/(566T ))/δ), (183)

we have |Ẑ| = 0 and thus F̂ = F . Otherwise, F̂ is defined by f̂ and Ẑ . Since f̂ ∈
C(F , 1/(8

√
4T/δ)), the total number of distinct f̂ is upper bounded byN (F , 1/(8

√
4T/δ)). Since

there are at most
6912 dimE

(
F , δ/

(
16T 2

))
log
(
16(H + 1)2T 2/δ

)
lnT ln(4N (F , δ/(566T ))/δ) (184)

distinct elements in Ẑ , while each of them belongs to C(S ×A, 1/(8
√

4T/δ)) and |Ẑ| ≤ 4T/δ, the
total number of distinct Ẑ is upper bounded by

(N (S ×A, 1/(8
√
4T/δ)) · 4T/δ)6912 dimE(F,δ/(16T 2)) log(16(H+1)2T 2/δ) lnT ln(4N (F,δ/(566T ))/δ).

(185)
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D.4 ANALYSIS OF THE ALGORITHM

We are now ready to prove the regret bound of Algorithm 1. The next lemma establishes a bound on
the estimate of a single backup.

Lemma 17. (Single Step Optimization Error). Consider a fixed k ∈ [K]. Let

Zk = {(st,h′ , at,h′)}(t,h′)∈[k−1]×[H] , (186)

as defined in Line 5 in Algorithm 1. For any V : S → [0, H], define

DV
k := {(st,h′ , at,h′ , rt,h′ + V (st,h′+1))}(t,h′)∈[k−1]×[H] , (187)

and

f̂V := argmin
f∈F

∥f∥2DV
k
. (188)

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least
1− δ, such that conditioned on EV,δ , for any V ′ : S → [0, H] with ∥V ′ − V ∥∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′

(·, ·)− r(·, ·)−
∑
s′∈S

P (s′ | ·, ·)V ′ (s′)

∥∥∥∥∥
Zk

≤ c′ · (H
√
log(2/δ) + logN (F , 1/T )), (189)

for some absolute constant c′ > 0.

Proof. In our proof, we consider a fixed V : S → [0, H], and define

fV (·, ·) := r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V (s′) . (190)

For any f ∈ F , we consider
∑

(t,h)∈[k−1]×[H] ξt,h(f) where

ξt,h(f) := 2
(
f (st,h, at,h)− fV (st,h, at,h)

)
·
(
fV (st,h, at,h)− rt,h − V

(
sτh+1

))
. (191)

For any (t, h) ∈ [k − 1]× [H], define Ft,h as the filtration induced by the sequence

{(st,h′ , at,h′)}(t,h′)∈[τ−1]×[H] ∪
{
(sτ1 , a

τ
1) , (s

τ
2 , a

τ
2) , . . . ,

(
sτh−1, a

τ
h−1

)}
. (192)

Then E [ξt,h(f) | Ft,h] = 0 and

|ξt,h(f)| ≤ 2(H + 1)
∣∣f (st,h, at,h)− fV (st,h, at,h)

∣∣ . (193)

By Azuma-Hoeffding inequality, we have

Pr

∣∣∣∣∣∣
∑

(t,h)∈[k−1]×[H]

ξt,h(f)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
− ε2

8(H + 1)2 ∥f − fV ∥2Zk

)
. (194)

Let

ε =

(
8(H + 1)2 log

(
2N (F , 1/T )

δ

)
·
∥∥f − fV ∥∥2Zk

)1/2

≤ 4(H + 1)
∥∥f − fV ∥∥Zk

·
√
log(2/δ) + logN (F , 1/T ) (195)

We have, with probability at least 1− δ, for all f ∈ C(F , 1/T ),∣∣∣∣∣∣
∑

(t,h)∈[k−1]×[H]

ξt,h(f)

∣∣∣∣∣∣ ≤ 4(H + 1)
∥∥f − fV ∥∥Zk

·
√
log(2/δ) + logN (F , 1/T ). (196)
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We define the above event to be EV,δ , and we condition on this event for the rest of the proof. For
all f ∈ F , there exists g ∈ C(F , 1/T ), such that ∥f − g∥∞ ≤ 1/T , and we have∑

(t,h)∈[k−1]×[H]

ξt,h(f) ≤

∣∣∣∣∣∣
∑

(t,h)∈[k−1]×[H]

ξt,h(g)

∣∣∣∣∣∣+ 2(H + 1)

≤ 4(H + 1)
∥∥g − fV ∥∥Zk

·
√
log(2/δ) + logN (F , 1/T ) + 2(H + 1)

≤ 4(H + 1)
(∥∥f − fV ∥∥Zk

+ 1
)
·
√

log(2/δ) + logN (F , 1/T ) + 2(H + 1).

(197)

Consider V ′ : S → [0, H] with ∥V ′ − V ∥∞ ≤ 1/T . We have∥∥∥fV ′
− fV

∥∥∥
∞
≤ ∥V ′ − V ∥∞ ≤ 1/T. (198)

For any f ∈ F ,

∥f∥2DV ′
k

−
∥∥∥fV ′

∥∥∥2
DV ′

k

=
∥∥∥f − fV ′

∥∥∥2
Zk

+ 2
∑

(st,h′ ,at,h′)∈Zk

(
f (st,h′ , at,h′)− fV

′
(st,h′ , at,h′)

)
·
(
fV

′
(st,h′ , at,h′)− rt,h′ − V ′ (st,h′+1)

)
.

(199)

For the second term, we have,

2
∑

(st,h′ ,at,h′)∈Zk

(
f (st,h′ , at,h′)− fV

′
(st,h′ , at,h′)

)
·
(
fV

′
(st,h′ , at,h′)− rt,h′ − V ′ (st,h′+1)

)
≥ 2

∑
(st,h′ ,at,h′)∈Zk

(
f (st,h′ , at,h′)− fV (st,h′ , at,h′)

)
·
(
fV (st,h′ , at,h′)− rt,h′ − V (st,h′+1)

)
− 4(H + 1) · ∥V ′ − V ∥∞ · |Zk|

=
∑

(t,h)∈[k−1]×[H]

ξt,h(f)− 4(H + 1) · ∥V ′ − V ∥∞ · |Zk|

≥ −4(H + 1)
(∥∥f − fV ∥∥Zk

+ 1
)
·
√
log(2/δ) + logN (F , 1/T )

− 2(H + 1)− 4(H + 1) · ∥V ′ − V ∥∞ · |Zk|

≥ −4(H + 1)

(∥∥∥f − fV ′
∥∥∥
Zk

+ 2

)
·
√
log(2/δ) + logN (F , 1/T )− 6(H + 1). (200)

Recall that f̂V
′
= argminf∈F ∥f∥2DV ′

k
. We have

∥∥∥f̂V ′
∥∥∥2
DV ′

k
−
∥∥∥fV ′

∥∥∥2
DV ′

k
≤ 0, which implies,

0 ≥
∥∥∥f̂V ′

∥∥∥2
DV ′

k
−
∥∥∥fV ′

∥∥∥2
DV ′

k

=
∥∥∥f̂V ′

− fV
′
∥∥∥2
Zk

+ 2
∑

(sτh′ ,a
τ
h′)∈Zk

(
f̂ (sτh′ , aτh′)− fV

′
(sτh′ , aτh′)

)
·
(
fV

′
(sτh′ , aτh′)− rτh′ − V ′ (sτh′+1

))

≥
∥∥∥f̂V ′

− fV
′
∥∥∥2
Zk

− 4(H + 1)

(∥∥∥f̂V ′
− fV

′
∥∥∥
Zk

+ 2

)
·
√

log(2/δ) + logN (F , 1/T )− 6(H + 1).

(201)

Solving the above inequality, we have,∥∥∥f̂V ′
− fV

′
∥∥∥
Zk

≤ c′ ·
(
H ·

√
log δ−1 + logN (F , 1/T )

)
, (202)
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for an absolute constant c′ > 0.

Lemma 18. (Confidence Region). In Algorithm 1, let Fk,h be a confidence region defined as

Fk,h =
{
f ∈ F | ∥f − fk,h∥2Zk

≤ β(F , δ)
}
. (203)

Then with probability at least 1− δ/8, for all k, h ∈ [K]× [H],

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′) ∈ Fk,h, (204)

provided

β(F , δ) ≥ c′ · (H
√
log(T/δ) + log(|W|) + logN (F , 1/T ))2, (205)

for some absolute constant c′ > 0. HereW is given as in Proposition 5.

Proof. For all (k, h) ∈ [K]× [H], the bonus function bk,h(·, ·) ∈ W . Note that

Q := {min{f(·, ·) + w(·, ·), H} | w ∈ W, f ∈ C(F , 1/T )} ∪ {0} (206)

is a (1/T )-cover of

Qk,h+1(·, ·) =
{
min {fk,h+1(·, ·) + bk,h+1(·, ·), H} h < H

0 h = H
. (207)

I.e., there exists q ∈ Q such that ∥q −Qk,h+1∥∞ ≤ 1/T . This implies

V :=

{
max
a∈A

q(·, a) | q ∈ Q
}

(208)

is a (1/T )-cover of Vk,h+1 with log(|V|) ≤ log |W| + logN (F , 1/T ) + 1. For each V ∈ V , let
EV,δ/(8|V|T ) be the event defined in Lemma 17. By Lemma 17, we have Pr

[⋂
V ∈V EV,δ/(8|V|T )

]
≥

1− δ/(8T ). We condition on
⋂

V ∈V EV,δ/(8|V|T ) in the rest part of the proof.

Recall that fk,h is the solution of the optimization problem in Line 8 of Algorithm 1, i.e., fk,h =
argminf∈F ∥f∥2Dk,h

. Let V ∈ V such that ∥V − Vk,h+1∥∞ ≤ 1/T . Thus, by Lemma 5, we have∥∥∥∥∥fk,h(·, ·)−
(
r(·, ·) +

∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′)

)∥∥∥∥∥
Zk

≤ c′ · (H
√
log(T/δ) + logN (F , 1/T ) + log |W|) (209)

for some absolute constant c′. Therefore, by a union bound, for all (k, h) ∈ [K] × [H], we have
fk,h(·, ·)−

(
r(·, ·) +

∑
s′∈S P (s′ | ·, ·)Vk,h+1 (s

′)
)
∈ Fk,h with probability at least 1− δ/8.

The above lemma guarantees that, with high probability, r(·, ·)+
∑

s′∈S P (s′ | ·, ·)Vk,h+1(·, ·) lies
in the confidence region. With this, it is guaranteed that {Qk,h}(h,k)∈[H]×[K] are all optimistic, with
high probability. This is formally presented in the next lemma.
Lemma 19. With probability at least 1− δ/4, for all (k, h) ∈ [K]× [H], for all (s, a) ∈ S ×A,

Q∗
h(s, a) ≤ Qk,h(s, a) ≤ r(s, a) +

∑
s′∈S

P (s′ | s, a)Vk,h+1 (s
′) + 2bk,h(s, a). (210)

Proof. For each (k, h) ∈ [K]× [H], define

Fk,h =
{
f ∈ F | ∥f − fk,h∥2Zk

≤ β(F , δ)
}
. (211)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Let E be the event that for all (k, h) ∈ [K]× [H], r(·, ·)+
∑

s′∈S P (s′ | ·, ·)Vk,h+1 (s
′) ∈ Fk,h. By

Lemma 18, Pr[E ] ≥ 1− δ/8. Let E ′ be the event that for all (k, h) ∈ [K]× [H] and (s, a) ∈ S ×A,
bk,h(s, a) ≥ w (Fk,h, s, a). By Proposition 5 and union bound, E ′ holds failure probability at most
δ/8. In the rest part of the proof we condition on E and E ′.
Note that

max
f∈Fk,h

|f(s, a)− fk,h(s, a)| ≤ w (Fk,h, s, a) ≤ bk,h(s, a). (212)

Since

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)Vk,h+1 (s
′) ∈ Fk,h, (213)

for any (s, a) ∈ S ×A, we have∣∣∣∣∣r(s, a) + ∑
s′∈S

P (s′ | s, a)Vk,h+1 (s
′)− fk,h(s, a)

∣∣∣∣∣ ≤ bk,h(s, a). (214)

Hence,

Qk,h(s, a) ≤ fk,h(s, a) + bk,h(s, a) ≤ r(s, a) +
∑
s′∈S

P (s′ | s, a)Vk,h+1 (s
′) + 2bk,h(s, a).

(215)

Now we prove Q∗
h(s, a) ≤ Qk,h(s, a) by induction on h. When h = H + 1, the desired inequality

clearly holds. Now we assume Q∗
h+1(·, ·) ≤ Qk,h+1(·, ·) for some h ∈ [H]. Clearly we have

V ∗
h+1(·) ≤ Vk,h+1(·). Therefore, for all (s, a) ∈ S ×A

Q∗
h(s, a) = r(s, a) +

∑
s′∈S

P (s′ | s, a)V ∗
h+1 (s

′)

≤ min

{
H, r(s, a) +

∑
s′∈S

P (s′ | s, a)Vk,h+1 (s
′)

}
≤ min {H, fk,h(s, a) + bk,h(s, a)}
= Qk,h(s, a). (216)

The next lemma upper bounds the regret of the algorithm by the sum of bk,h(·, ·).
Lemma 20. With probability at least 1− δ/2,

Reg(K) ≤ 2

K∑
k=1

H∑
h=1

bk,h (sk,h, ak,h) + 4H
√
KH · log(8/δ). (217)

Proof. In our proof, for any (k, h) ∈ [K]× [H − 1] define

ξk,h =
∑
s′∈S

P (s′ | sk,h, ak,h)
(
Vk,h+1 (s

′)− V πk

h+1 (s
′)
)
−
(
Vk,h+1 (sk,h+1)− V πk

h+1 (sk,h+1)
)
,

(218)

and define Fk,h as the filtration induced by the sequence

{(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H] ∪ {(sk,1, ak,1) , (sk,2, ak,2) , . . . , (sk,h, ak,h)} . (219)

Then

E [ξk,h | Fk,h] = 0 and |ξk,h| ≤ 2H. (220)
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By Azuma-Hoeffding inequality, with probability at least 1− δ/4,

K∑
k=1

H−1∑
h=1

ξk,h ≤ 4H
√
KH · log(8/δ). (221)

We condition on the above event in the rest of the proof. We also condition on the event defined in
Lemma 19 which holds with probability 1− δ/4.

Recall that

Reg(K) =

K∑
k=1

(V ∗
1 (sk,1)− V πk

1 (sk,1)) ≤
K∑

k=1

Vk,1 (sk,1)− V πk
1 (sk,1) . (222)

We have

Reg(K)

≤
K∑

k=1

(
r (sk,1, ak,1) +

∑
s′∈S

P (s′ | sk,1, ak,1)Vk,2 (s′) + 2bk,1 (sk,1, ak,1)

−r (sk,1, ak,1)−
∑
s′∈S

P (s′ | sk,1, ak,1)V πk
2 (s′)

)

=

K∑
k=1

∑
s′∈S

P (s′ | sk,1, ak,1) (Vk,2 (s′)− V πk
2 (s′)) + 2bk,1 (sk,1, ak,1)

=

K∑
k=1

Vk,2 (sk,2)− V πk
2 (sk,2) + ξk,1 + 2bk,1 (sk,1, ak,1)

≤
K∑

k=1

V k
3

(
sk3
)
− V πk

3

(
sk3
)
+ ξk,1 + ξk,2 + 2bk,1 (sk,1, ak,1) + 2bk,2 (sk,2, ak,2)

≤
K∑

k=1

H−1∑
h=1

ξk,h +

K∑
k=1

H∑
h=1

2bk,h (sk,h, ak,h) . (223)

Therefore,

Reg(K) ≤ 2

K∑
k=1

H∑
h=1

bk,h (sk,h, ak,h) + 4H
√
KH · log(8/δ). (224)

It remains to bound
∑K

k=1

∑H
h=1 bk,h (sk,h, ak,h), for which we will exploit fact thatF has bounded

eluder dimension.
Lemma 21. With probability at least 1− δ/4, for any ε > 0,

K∑
k=1

H∑
h=1

I (bk,h (sk,h, ak,h) > ε) ≤
(
cβ(F , δ)

ε2
+H

)
· dimE(F , ε), (225)

for some absolute constant c > 0. Here β(F , δ) is as defined in (4).

Proof. Let E be the event that or all (k, h) ∈ [K]× [H],

bk,h(·, ·) ≤ w
(
Fk,h, ·, ·

)
, (226)

where

Fk,h =
{
f ∈ F : ∥f − fk,h∥2Zk

≤ 9β + 12
}
. (227)
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By Proposition 5, E holds with probability at least 1− δ/4. In the rest of the proof, we condition on
E .

Let L = {(sk,h, ak,h) | bk,h (sk,h, ak,h) > ε} with |L| = L. We show that there exists
(sk,h, ak,h) ∈ L such that (sk,h, ak,h) is ε-dependent on at least L/dimE(F , ε) − H dis-
joint subsequences in Zk∩ L. We demonstrate this by using the following procedure. Let
L1,L2, . . . ,LL/ dimE(F,ε)−1 be L/dimE(F , ε) − 1 disjoint subsequences of L which are initially
empty. We consider

{(sk,1, ak,1) , (sk,2, ak,2) , . . . , (sk,H , ak,H)} ∩ L, (228)

for each k ∈ [K] sequentially. For each k ∈ [K], for each z ∈
{(sk,1, ak,1) , (sk,2, ak,2) , . . . , (sk,H , ak,H)}∩L, we find j ∈ [L/dimE(F , ε)− 1] such that z is ε-
independent of Lj and then add z into Lj . By the definition of ε-independence, |Lj | ≤ dimE(F , ε)
for all j and thus we will eventually find some (sk,h, ak,h) ∈ L such that (sk,h, ak,h) is ε-dependent
on each of L1,L2, . . . ,LL/ dimE(F,ε)−1. Among L1,L2, . . . ,LL/ dimE(F,ε)−1, there are at most
H − 1 of them that contain an element in

{(sk,1, ak,1) , (sk,2, ak,2) , . . . , (sk,H , ak,H)} ∩ L, (229)

and all other subsequences only contain elements in Zk ∩ L. Therefore, (sk,h, ak,h) is ε-dependent
on at least L/dimE(F , ε)−H disjoint subsequences in Zk ∩ L.

On the other hand, since (sk,h, ak,h) ∈ L, we have bk,h (sk,h, ak,h) > ε, which implies there exists
f, f ′ ∈ F with ∥f − fk,h∥2Zk

≤ 9β+12 and ∥f ′ − fk,h∥2Zk
≤ 9β+12 such that f(z)− f ′(z) > ε.

By triangle inequality, we have ∥f − f ′∥2Zk
≤ 36β + 48. On the other hand, since (sk,h, ak,h) is

ε-dependent on at least L/dimE(F , ε)−H disjoint subsequences in Zk ∩ L, we have

(L/dimE(F , ε)−H) ε2 ≤ ∥f − f∥2Zk
≤ 36β + 48, (230)

which implies

L ≤
(
36β + 48

ε2
+H

)
dimE(F , ε). (231)

Lastly, we apply the above lemma to bound the overall regret.
Lemma 22. With probability at least 1− δ/4,

K∑
k=1

H∑
1

bk,h (sk,h, ak,h) ≤ 1 + 4H2 dimE(F , 1/T ) +
√
c · dimE(F , 1/T ) · T · β(F , δ), (232)

for some absolute constant c > 0. Here β(F , δ) is as defined in (4).

Proof. In the proof we condition on the event defined in Lemma 21. We define wk,h :=
bk,h (sk,h, ak,h). Let w1 ≥ w2 ≥ . . . ≥ wT be a permutation of {wk,h}(k,h)∈[K]×[H]. By the
event defined in Lemma 21, for any wt ≥ 1/T , we have

t ≤
(
cβ(F , δ)
w2

t

+H

)
dimE (F , wt) ≤

(
cβ(F , δ)
w2

t

+H

)
dimE(F , 1/T ), (233)

which implies

wt ≤
(

t

dimE(F , 1/T )
−H

)−1/2

·
√
cβ(F , δ). (234)

Moreover, we have wt ≤ 4H . Therefore,
T∑

t=1

wt ≤ 1 + 4H2 dimE(F , 1/T ) +
∑

H dimE(F,1/T )<t≤T

(
t

dimE(F , 1/T )
−H

)−1/2

·
√
cβ(F , δ)

≤ 1 + 4H2 dimE(F , 1/T ) + 2
√
c · dimE(F , 1/T ) · T · β(F , δ). (235)
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We are now ready to prove our main theorem.

Proof of Theorem 1. By Lemma 20 and Lemma 22, with probability at least 1− δ,
Reg(K)

≤ min

{
KH,

K∑
k=1

H∑
h=1

2bk,h (sk,h, ak,h) + 4H
√
KH · log(8/δ)

}
(236)

≤ c ·min
{
KH,

(
dimE(F , 1/T ) ·H2 +

√
dimE(F , 1/T ) · T · β(F , δ) +H

√
KH · log δ−1

)}
,

(237)
for some absolute constants c > 0. Substituting the value of β(F , δ) completes the proof.

E IDEA: WEIGHT

In this section, we repeat the key results in He et al. (2022) that are useful for our derivation.
Lemma 23. For any 0 < δ < 1 and corruption budget C ≥ 0, set the confidence radius β =
R
√
d log ((1 +KL2/λ) /δ) +

√
λS + αC in Algorithm 1, then with probability at least 1− δ, for

every round k, the estimator θk satisfies that ∥θk − θ∗∥Σk
≤ β.

Lemma 24. For any 0 < δ < 1 and corruption budget C ≥ 0, set the confidence radius β in
Algorithm 1 as follows:

β = R
√
d log ((1 +KL2/λ) /δ) + αC +

√
λS. (238)

Then with probability at least 1− δ, its regret in the first K rounds is upper bounded by

Regret(K) = O

(
dR

√
K log2 ((1 +KL2/λ) /δ) + αC

√
dK log2 ((1 +KL2/λ) /δ) (239)

+ S
√
dλK log (1 +KL2/λ) +

Rd1.5

α
×
√
log3 ((1 +KL2/λ) /δ) (240)

+
dS
√
λ

α
×
√
log2 ((1 +KL2/λ) /δ) + dC

√
log2 ((1 +KL2/λ) /δ)

)
. (241)

In addition, if choosing α = (R
√
d+
√
λS)/C and λ = R2/S2, its regret can be upper bounded by

Regret(K) = Õ(d
√
K + dC). (242)

E.1 PROOF OF LEMMA 23

Proof. According to the definition of estimated vector θk in Algorithm 1 (Line 3), we have

θk = Σ−1
k bk = Σ−1

k

k−1∑
i=1

wixiri = Σ−1
k

k−1∑
i=1

wixi

(
x⊤
i θ + ηi + ci

)
. (243)

This equation further implies that the difference between estimated vector θk and the unknown
vector θ∗ can be decomposed as:

∥θk − θ∗∥Σk
=

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixi

(
x⊤
i θ

∗ + ηi + ci
)
− θ∗

∥∥∥∥∥
Σk

=

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixi

(
x⊤
i θ

∗ + ηi + ci
)
−Σ−1

k

(
k−1∑
i=1

wixix
⊤
i + λI

)
θ∗

∥∥∥∥∥
Σk

=

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixiηi +Σ−1
k

k−1∑
i=1

wixici − λΣ−1
k θ∗

∥∥∥∥∥
Σk

≤

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixiηi

∥∥∥∥∥
Σk︸ ︷︷ ︸

Stochastic error: I1

+

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixici

∥∥∥∥∥
Σk︸ ︷︷ ︸

Corruption error: I2

+
∥∥λΣ−1

k θ∗∥∥
Σk︸ ︷︷ ︸

Regularization error: I3

, (244)
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where the inequality holds due to the fact that ∥a+ b+ c∥Σk
≤ ∥a∥Σk

+ ∥b∥Σk + ∥c∥Σk.

For the stochastic error term I1, it can be bounded by the concentration Lemma H. 2 in AbbasiYad-
kori et al. (2011). More specifically, we introduce the auxiliary vector x′

i and noise η′i such that
x′
i =
√
wixi and η′i =

√
wiηi. According to the definition of weight θi, both of these two situa-

tions satisfies that the weight θi is bounded by wi ≤ 1. Since the original vector xi satisfies that
∥xi∥2 ≤ L and the original stochastic noise ηi is R-sub Gaussian, these results further imply that

∥x′i∥2 = ∥
√
wixi∥2 ≤ L, η

′
i =
√
wiηiisR− subGaussian. (245)

With this notation, the covariance matrix Σk and the stochastic error term I1 can be rewritten and
bounded as:

Σk = λI+

k−1∑
i=1

wixix
⊤
i = λI+

k−1∑
i=1

x′
i (x

′
i)

⊤ (246)

I1 =

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixiηi

∥∥∥∥∥
Σk

(247)

=

∥∥∥∥∥
k−1∑
i=1

wixiηi

∥∥∥∥∥
Σ−1

k

(248)

=

∥∥∥∥∥
k−1∑
i=1

x′
iη

′
i

∥∥∥∥∥
Σ−1

k

(249)

≤

√√√√2R2 log

(
det (Σk)

1/2
det (Σ1)

−1/2

δ

)
(250)

≤ R
√
d log ((1 +KL2/λ) /δ), (251)

where the first inequality holds due to Lemma H. 2 and the second inequality holds due to the facts
that Σk = λI+

∑k−1
i=1 x′

i (x
′
i)

⊤ and ∥x′∥2 ≤ L.

For the corruption error term I2, it can be bounded by

I2 =

∥∥∥∥∥Σ−1
k

k−1∑
i=1

wixici

∥∥∥∥∥
Σk

=

∥∥∥∥∥Σ−1/2
k

k−1∑
i=1

wixici

∥∥∥∥∥
2

≤
k−1∑
i=1

∥∥∥Σ−1/2
k wixici

∥∥∥
2

=

k−1∑
i=1

|ci| × wi

∥∥∥Σ−1/2
k xi

∥∥∥
≤

k−1∑
i=1

|ci|α

≤ αC, (252)

where the first inequality holds due to the fact that ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2, the second inequality
holds due to the definition of weight wi in Algorithm (Line 6) with the fact that Σk ⪰ Σi and the
last inequality holds due to the definition of corruption level C.

For the regularization error term I3, we have

I3 =
∥∥λΣ−1

k θ∗∥∥
Σk

= λ ∥θ∗∥Σ−1
k
≤
√
λ ∥θ∗∥2 ≤

√
λS, (253)
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where the first inequality holds due to ∥θ∗∥Σk
≤ ∥θ∗∥2 /

√
λmin (Σk) with the fact that Σk =

λI+
∑k−1

i=1 wixix
⊤
i ⪰ λI and the last inequality holds due to the assumption that ∥θ∗∥2 ≤ S.

Finally, we have

∥θk − θ∗∥Σk
≤ I1 + I2 + I3 ≤ R

√
d log ((1 +KL2/λ) /δ) + αC +

√
λS. (254)

Therefore, we finish the proof of Lemma 23.
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